沿岸漁場整備開発調査

坂口 研一・南 勝人・藤原正嗣・伊藤 徹・辻ヶ堂 諭・落合 昇・石川 貴朗

目的
アサリの漁獲量は全国的に減少傾向が著しく、近年三重県のアサリについても同様の傾向がみられている。このことから本県においてもアサリ資源量の回復の必要性が高まっている。本調査では平成5年に伊勢市沖に造成されたアサリ増殖場の実態を調査することによって造成漁場の生産性等を明確にするとともに天然優良漁場の調査を合わせて行い、比較することにより今後の漁場造成技術開発に資する。また、今後の造成漁場の適地選定資料となる。

方 法
調査海域
図1に示したとおり伊勢市沖に造成されたアサリ増殖場調査海域と香良洲町から二見町に向けての沿岸域に浮遊幼生調査海域及び河口干潟調査地点を設定し調査を行った。

図1 調査海域図

アサリ増殖場調査

浮遊幼生調査
增殖場内のアサリ浮遊幼生の観測を行った。浮遊幼生は満潮時に水中ボンプを用いて2m層海水を500ℓ洗み上げ、プランクトンネットによって洗み上げた海水を濾過することにより得た。測点は造成漁場内に3点（図1）、宮川河口の天然漁場に1点を設け（図3）、浮遊幼生の同定および計数を行った。

着底稚貝調査
増殖場内および増殖場周辺域に14測点を設け、アサリ着底稚貝の採集を行った（図1）。稚貝の採取法は、スミスマッシンタイヤー採泥器により得られた底泥を表面から1cm程度採取することでおこなった。また、サンプリングは1測点につき2回行行った。得られた底泥は0.1%ローズベンガル含有7%中性ホルマリンを等量加え、稚貝の同定および計数を行った。
場に1測点を設け（図3，図5），底質の調査を行った。底泥の採取はスミスマッキナー採泥器により行った。得られた底泥について乾式法により粒度組成を求めた。

![図2 浮遊幼生分布調査の測点図](image)

增殖場

![図3 増殖場および天然漁場の位置図](image)

![図4 着底稚貝および稚貝の分布調査の測点図](image)

伊勢湾沿岸漁場調査
浮遊幼生分布調査
三重県沿岸でアサリの生産量の多い二見町から香良洲町にかけての底深5mの等深線上にst.1～st.14の14測点を設け（図1），10月～11月に原則週1回の調査を行った。浮遊幼生の採取には水中ポンプを利用して深水2m層の海水500ℓを汲み上げ，目合100μmのプランクトンネットで通過し，得られた浮遊幼生の同定及び計数を行った。

着底稚貝調査
雲出川，楠田川，宮川及び勢田川の河口干渕に12月の大潮最干潮時（日中）の干出境界線上（D，L+70cm）に100m間隔で各4測点を設け，12月と2月に各測点で表砂を12cm厚ずつ採取し，0.1%ローズベンガル含有7%中性ホルマリンで固定し，着底稚貝の計数及び殻長を測定し，各干渕における着底稚貝数を12月と2月で比較した。

二枚貝生息量調査
雲出川，楠田川，宮川及び勢田川の河口干渕に12月の大潮最干潮時（日中）の干出境界線上（D，L+70cm）に100m間隔で各4測点を設け，12月と2月に各測点を0.25mの網状網を行い目合1mmで篩いにかけ，各干渕における生息二枚貝密度，生息量，殻長組成，肥満度を求める各干渕間で比較した。

干渕底底質調査
雲出川，楠田川，宮川及び勢田川の河口干渕に12月の大潮最干潮時（日中）の干出境界線上（D，L+70cm）に100m間隔で各4測点を設け，12月に底質を採取し，そ
の性状として粒度組成、酸化還元電位、COD、強熱減量、全硫化物を求め、各干渉間で比較した。

結果
アサリ増殖場調査
浮遊幼生調査
浮遊幼生は多くはないものの来遊していると考えられた。調査の結果、増殖場内は平均で22個/㎡であり、天然漁場では10個/㎡であった（図6）。また、天然漁場での浮遊幼生の分布調査（後述）から、調査の前日（11月13日）までに増殖場の沖合でも浮遊幼生の分布が確認されていることから（図7）造成漁場にも浮遊幼生は来遊しており、その分布は天然漁場と同様であっても適観度のないものと考えられた。

![増殖場および天然漁場での浮遊幼生の分布](image)

図6 増殖場および天然漁場での浮遊幼生の分布

![沖合での浮遊幼生の分布状況](image)

図7 沖合での浮遊幼生の分布状況

着底稚貝調査
着底稚貝は場所により着底していたが、時間帯に左右の相違が不揃って減少する傾向を示した。12月に採集した調査の結果、増殖場内の5個点および周辺域の3個点での着底稚貝が採集された。これに対して、1月に行った調査では、着底稚貝が採集された測点は増殖場内の3個点と周辺域の1個点と減少した。また、採集された着底稚貝の数をみると増殖場内のSt.9と周辺域のSt.10でともに12月〜1月にかけて減少する傾向を示した（図8）。このことから増殖場内およびその周辺域では稚貝の着底は行われているが、その場所および稚貝数が減少しており、着底後のダウン率の低さにつながっていることが示唆された。

![着底稚貝数の経時変化](image)

図8 着底稚貝数の経時変化

稚貝及び成貝調査
増殖場内では稚貝の生育は認められず、周辺域においても一部で生育が確認されたのにとどまった。12、1、2月に調査を行った結果、増殖場内では稚貝が採集されなかった。周辺域では12月にはSt.10で1、2月はSt.11で稚貝が採取された。探集された稚貝の推定分布量は平均380個/㎡であったのに対し、天然漁場で採取された稚貝の推定分布量は平均164個/㎡と2倍であった。また、天然漁場では成貝も採集されたのでに対して、周辺域では成貝はほとんど採集されなかった。

以上の結果から、増殖場への来遊は比較的高いものの、稚貝の着底も行われているが、何らかの原因により、本増殖場は稚貝の生育に適していないためにアサリの増殖が行われていないのではないかと思われる。

底質調査
調査の結果、増殖場および周辺域では2mm以上の礫が占める割合が高く、2mm以上の礫が20%以上を占める場所が大半を占めた。また、平成7年度に砂を投入した区画は礫の占める割合が他に比べ低い傾向をみせた（図9）。次に、それぞれの粒度組成の平均値をみると天然漁場は砂を主体としているのに対し、増殖場内は礫と泥fracを周辺域は礫を主体としていた（図10）。これらのことから増殖場内およびその周辺域の底質は粒度組成から見ると、アサリの増殖に適しているわけではない。また、平成7年度に投入した砂については比較的残存していると考えられる。
伊勢湾沿岸漁場調査

浮遊幼生分布調査

秋季調査における調査日別アサリ浮遊幼生の分布は初回調査の10月21日が247inds/m³、その後10月29日が62inds/m³、11月4日が30inds/m³、11月13日が95inds/m³で11月13日を除いて浮遊幼生数が減少していた（図11）。

測点別平均アサリ浮遊幼生量は宮川河口域のst.2、st.3 と大きな河川から少し離れたst.5 及びst.7 の4測点で200~300inds/m³ となり、その他の測点の50inds/m³ 前後と比べて浮遊幼生量は5~6 倍多かった。

測点別平均浮遊幼生数をみるとホトトギス浮遊幼生の測点別分布傾向はアサリ浮遊幼生の分布と類似したものであったが、全測点の平均浮遊幼生数を比較するとアサリ108inds/m³に対してホトトギスは50inds/m³、その他の2枚貝浮遊幼生は22inds/m³であり、全二枚貝浮遊幼生に対するアサリ浮遊幼生の比率は13%であった（図12）。

調査日別測点別アサリ浮遊幼生数をみると10月21日のst.1 st.8 において測点により浮遊幼生数が大きく異なっていた。また、11月13日のアサリ浮遊幼生数が増加したのはst.2 が特異的に浮遊幼生数が多かったことがその要因であり、その他の測点においては量的にはかなり少なかった。

アサリ浮遊幼生の水平分布をみると秋季調査を通じて浮遊幼生数が減少していく中で、宮川、勢田川周辺域に浮遊幼生が多く、雲出川、椎田川周辺域に浮遊幼生数は少なかった（図13）。

着底稚貝調査

12月のアサリ着底稚貝密度は雲出川河口干潟で1,250個/m²、椎田川河口干潟で210個/m²、宮川河口干潟で415個/m²、勢田川河口干潟で830個/m²であった。勢田川では、ホトトギス620個/m²、他の着底稚貝2,916個/m²がみられた（図14）。

2月のアサリ着底稚貝密度は雲出川河口干潟で210個/m²、宮川河口干潟で415個/m²、椎田川河口干潟と勢田川河口干潟では着底稚貝はみられなかった（図15）。全干潟についてみてみると12月に比べ2月の調査時にはアサリの着底稚貝の生息数は23%減少し、ホトトギスやその他の着底稚貝はみられなくなった。アサリ着底稚貝の殻長は12月調査時には225〜310μm、2月調査時は280〜417μmであった。
図13 アサリ浮遊幼生水平分布

図14 河口干潟別平均着底稚貝密度（12月）

図15 河口干潟別平均着底稚貝密度（2月）
二枚貝生息量調査

千潟別二枚貝生息密度をみると各干潟とも二枚貝の優占種はアサリであり、雲出川河口干潟74個/m²、柳田川河口干潟227個/m²、宮川河口干潟226個/m²であった（図16）。

千潟別二枚貝生息重量をみると雲出川河口干潟60.5g/m²、柳田川河口干潟138.7g/m²、宮川河口干潟582.6g/m²、勢田川河口干潟1077.9g/m²であった。

千潟越アサリ殻長組成を図17に示した。各干潟の平均殻長は雲出川河口干潟17.4mm、柳田川河口干潟17.7mm、宮川河口干潟21.1mm、勢田川河口干潟25.5mmであった。宮川河口干潟と勢田川河口干潟では生息密度はほとんど同じであったが、生息個体のサイズが大きく異なっていた。また、各干潟において殻長1mm～6mmの間のアサライ殻長が全くみられなかった。2月に採取した各河口干潟の殻長2cm以上のアサリについて肥満度を測定した結果、雲出川河口干潟他の干潟に比べ低値となっていった（図18）。

千潟域底質調査

酸化還元電位は全測点において+110～230mvの範囲であり、酸素が存在する状態であった。また、各干潟間には有意差はなかった。

CODは全測点において0.7～6.5mg/g乾泥の範囲であり各干潟間には有意差はなかった。

細砂+シルト+ブレーカ含有率（％）は雲出川0.42～0.89（0.63）、柳田川0.7～1.17（0.86）、宮川0.37～2.4（1.14）、勢田川7.47～28.11（17.68）であった。柳田川河口干潟と雲出川、柳田川の河口干潟の間に有意差（t検定 5％有意水準）が認められ、宮川の間には有意差はわずかに認められなかったものの勢田川河口干潟の細砂+シルト+ブレーカ含有率は他の河口干潟に比べて大きく異なっていた（図19）。

中央粒径（mm）は雲出川0.49～0.84（0.7）、柳田川0.46～0.6（0.54）、宮川0.41～0.91（0.71）、勢田川0.15～0.19（0.17）であり勢田川河口干潟と雲出川、柳田川の河口干潟の間に有意差（t検定 1％有意水準）が認められ、宮川の間には有意差はわずかに認められなかったものの勢田川河口干潟の中央粒径（mm）は他の河口干潟に比べて大きく異なっていた（図20）。

---133---
河口干済別平均極細砂＋シルト－クレイ含有量

図19

河口干済別平均中央粒径値

図20

考察

本年度の調査で増殖場内では著しく降る稚魚の生産が何らかの原因で阻害されていることが示唆されたこと、増殖場および周辺域では2mm以上の魚が20%以上を占める場所が大半を占めていたことから、今後、魚苗の粒度組成以外の阻害要因を探るとともに、生息改善によるアサリ稚魚の生産状態向上の可能性について調査を進めていきたい。

天然漁場調査ではアサリ浮遊幼生の分布の多いかった勢田川と少ないかった雲出川において、アサリ着底稚魚密度では、雲出川の方が多くなるという逆転現象が起こり、さらに着底稚魚の増殖が起こって着底密度の差は大きくなかった。しかし、生息2枚貝数では勢田川の方が生息量が著しく大きいという結果が出た。これは興味深い結果であるが、調査箇所の地盤高がD、L+70cmのみであったこともあり、この現象が今回調査した干渉において普通のものであるかどうか、また、この現象が起る要因について特定することができなかった。今後の調査では4～5月の産卵最高期の浮遊幼生分布を調査するとともに今年度調査することのできなかったD、L+30cmと非干出域についても合わせて調査を行い、結果についてコホート解析等を行う必要があると考えられる。

関連報告

平成10年度沿岸漁場整備開発調査委託事業報告書