BULLETIN OF FISHERIES RESEARCH INSTITUTE OF MIE
No. 7
DECEMBER 1997

三重県水産技術センター研究報告
第 7 号
平成9年12月

三重県水産技術センター
三重県志摩郡浜島町
FISHERIES RESEARCH INSTITUTE OF MIE
HAMAJIMA, MIE, JAPAN
三重県水産技術センター研究報告

第7号

目次

イセエビの資源評価と漁業管理

... 山川 卓 1
Bulletin of Fisheries Research Institute of Mie

No. 7

Contents

YAMAKAWA, T.:
Stock assessment and fisheries management of the Japanese spiny lobster
Panulirus japonicus. ... 1
イセエビの資源評価と漁業管理**1

山川 卓

Stock Assessment and Fisheries Management of the Japanese Spiny Lobster *Pandalus japonicus*

Takashi YAMAKAWA

In order to produce an optimal management policy for the Japanese spiny lobster *Pandalus japonicus* fishery, stock assessment was conducted for the lobster tangle net fisheries at Mie Prefecture, Japan. Using this as an exemplified case, the optimal fishing policy is discussed for the effective and sustainable utilization of stocks.

1. Introduction

Information in the literature on the life history, ecological features, stock construction, and reproduction of the Japanese spiny lobster is summarized, and the basic requirement for the management is discussed. Because the stock structure and the quantitative relationship with reproduction are still obscure and that fisheries management measures at present vary between different localities, it is necessary to manage the recruited stock at each locality for its effective utilization and ensure the spawning per recruit.

2. Estimation of growth, age composition, and recruitment from multiple length frequency analysis

Based on the separation of different cohorts from compound multiple normal distributions, a method is proposed which can simultaneously analyze multiple length frequency data sets even when there is fluctuation in the interannual growth rate. Growth, age composition, and recruitment of the Japanese spiny lobster were estimated from the analysis. Each parameter can be estimated independently by data set or as common for some or all of the data sets. Parameters can also be selected as unknown or can be fixed. Through simultaneous analysis of the multiple data sets, accurate estimations can be carried out allowing the utilization of the full information inherent in the data. Carapace-length frequency data sets at Mie Prefecture, of 62,605 individuals over five fishing seasons from October to April of 1990–1991 to 1994–1995 were analyzed. Judging from the comparison of AIC values, optimality of the model increased through the introduction of variations to allow for interannual and seasonal growth fluctuations, shifts in the standard deviation with growth, and the total mortality coefficient for older age groups. From the estimated von Bertalanffy growth curves, the carapace length in October at each age after settlement as pueruli are calculated as: for males, 45.0mm for the 1st age, 62.4mm for the 2nd age, and 74.1mm for the 3rd age, and for females, 42.3mm for the 1st age, 56.2mm for the 2nd age, and 64.7mm for the 3rd age. Growth fluctuated from year to year, which suggests the presence of a density dependent process. The most prominent age group in the catch is the 2nd age group. Size selectivity of tangle nets for spiny lobster is inferred based on the recruitment process of

1 东京大学学位审查論文(Thesis submitted for the degree of Doctor of Agriculture at the University of Tokyo, Dec. 1995.)
the 1st age groups during the fishing season and its fluctuation between years. The estimated growth rate is compared with those from the literature.

3. Stock assessment using an expanded DeLury’s method

DeLury’s method is expanded to fourteen maximum likelihood models to allow for variable catchability coefficients (q_t) according to environmental factors such as water temperature, lunar cycle, and the intensity of ocean waves. Nine statistical models are introduced with different probability distribution functions. Optimality of the models was examined by AIC, and the confidence intervals of the parameters estimated with likelihood ratio statistics. Numerical optimization was performed using the quasi-Newton method. Daily catch-effort-environment data of the Japanese spiny lobster tangle net fishery at Wagu for the fishing season from October 1990 to April 1991 are analyzed. AIC values greatly improved when variable catchability coefficients were assumed. Judging from the estimated parameter values, q_t is large in conditions such as when ① the water temperature is high, ② the phase of the moon is around the new moon, and ③ ocean waves are intense. The variation in q_t is probably attributable to changes in the activity of lobsters according to the fluctuation of environmental factors. As for the statistical models, the negative binomial model was optimal. This result adequately reflects the distributional nature of spiny lobsters in the field which shows a marked degree of aggregation, coupled with other features in the fishing activity. Although the confidence intervals of the estimated parameters are rather broad in the negative binomial model, those calculated through simultaneous analysis using a three-year data set are narrower as compared to those with single-year data set.

4. Stock assessment by statistical catch-at-age analysis using auxiliary information on separability

An assessment model is proposed which treats the multi-cohort analysis (VPA) and the expanded DeLury’s method in a united form, and the stock size by year, age, and sex, catchability coefficient, and the selectivity curve are simultaneously estimated. This model corresponds to a statistical catch-at-age analysis with a generalized assumption for separability. Catchability coefficient F_{ui} by each sex (for females: $i=0$, for males: $i=1$) of age j at tth day in year i is separated into a product of elements as follows and introduced to the basic fishing equation:

$$F_{ui} = q_u \times \rho (L_{ui}) \times X_u,$$

where q, $\rho (L)$, and X represent the catchability coefficient, selectivity by size L, and fishing effort, respectively. The likelihood is described using a product of the conditional negative binomial distribution. For the catchability coefficient, model XIV in chapter 3 is utilized. A sigmoid curve is assumed for the selectivity curve. A sex ratio at the first age and virtual relationships for the number of individuals of the successive age groups of each cohort are introduced as restrictions. For natural mortality M, two different cases are introduced: ① M is estimated together with the other parameters, ② M is given as known. Daily catch-effort-environment data for the five years from October 1990 to April 1995 are applied. Annual catch amounts to 65,000–118,000 (mean 91,000) individuals, and the total number of boats operated each year is 2,593–3,447 boats·day (mean of 2,985 boats·day). A reasonable estimation was carried out which reflects shifts in catchability coefficient caused by variations of environmental factors and shifts in selectivity caused by growth of individuals. The initial stock (number of individuals) of each group was estimated, and numbers of individuals caught, natural mortality, and survived to the next year are specified. Annual catch rates estimated are: for the 1st age groups, 16.9–27.2% (male) and 9.9–21.1% (female), for the 2nd age groups, 63.6–74.4% (male) and 52.4–66.2% (female), for age groups older than the 3rd age, 66.7–79.1% (male) and 64.2–76.8% (female).
estimated selectivity curve indicates that recruitment commences at around 40mm carapace length, then
the selectivity greatly increases from 50mm to 60mm. When \(M \) is estimated as unknown (1), it converged
to an unrealistic value (\(M=0 \)). When \(M \) is given as known (2), initial stock number increased as \(M \)
becomes large, while relatively stable values were obtained for the catchability coefficient and the
selectivity curve irrespective of the value of \(M \). Estimation error would be large if the catchability
coefficient is simply separated into “a factor inherent by year” and “a factor inherent by age” as in
the former way. Flexible models can be selected by the present method depending on the difference of
available information and unknown parameters.

5. Fisheries management based on the optimal within fishing season allocation of fishing effort

Optimal in-season allocation of fishing effort was investigated for the spiny lobster tangle net
fishery for the purpose of determining the most efficient utilization of the recruited stocks. Considering the shifts in the market price, catchability coefficient, and income from incidental catch etc.
within a fishing season, optimal allocation of the fishing effort to maximize the total benefit of
fishermen was calculated using the maximum principle. If the price of lobster is independent of the
amount landed, a maximum fishing effort (30 boats/day) should be undertaken when the fishery is
operated, while no fishing effort should be undertaken when the fishery is recessed. If the price of
lobsters is affected by the amount landed, there could be cases when an intermediate level of fishing
effort is preferable. Optimal in-season strategy is to operate a fishery when a higher marginal benefit
from the fishery is expected by adding a unit of new fishing effort. If the revenue from spiny lobsters
is considered exclusively as the objective function, fishing efforts should be concentrated during periods
when the market price is higher. If operating costs, income from incidental catch and/or profits from
side fisheries are also considered, the optimal allocation would vary according to a combination of the
factors to be considered.

6. Optimal fishery policy of recruited stock considering the economic value of spawners

A management model is proposed which simultaneously determines the effective utilization of the
recruited stock based on a fishing effort allocated over the life span and the security of the spawning
stock. A term which represents the economic value of the spawning stock, \([\text{(economic value of an egg} \times \text{stock size of females by age}) \times \text{(fecundity of each female)})\], is added to the objective function of
the dynamic optimization model derived in chapter 5. Daily catch number of individuals is described by
a similar model as in chapter 4. Analysis was conducted for two cases using a maximum principle and
a non-linear optimization technique: (1) when a special single age group can be selectively caught, (2)
when several age groups are simultaneously caught. Maximum fishing effort should be undertaken
when the “present fishery value” at each time is greater than the sum of the “future fishery value” and
the “reproductive value”, while no fishing effort should be undertaken otherwise. A fishing effort
allocated over the life span is presented for a certain \(r \) in case (1) as a combination of the schedule for
fishing within a fishing season for each age. Catch should be concentrated on older age groups for a
larger \(r \). In case (2), an optimal selectivity curve is presented in addition to the optimal within season
allocation of fishing effort. Raising the age at first capture through revision of the gear and
depression of the total fishing effort are required in the actual fishery. A larger selected size is
required for larger \(r \). Spawning per recruit (SPR) increases, while yield per recruit (YPR) decreases,
with the increase of \(r \) for both cases (1) and (2). An optimal fishery policy which simultaneously
attains the effective utilization of the recruited stock and the security of spawning stock can be
determined by manipulating the value of r, if the necessary number of eggs for maintaining the stock or attaining a MSY is known.

7. Discussion

Methodology for the stock assessment and determination of fisheries management policies for the Japanese spiny lobster are discussed. For effective stock assessment, the introduction and extension of more convenient assessment methods such as CIR (Change in Ratio) method are important, together with the descriptive methods developed in this paper. For optimal fisheries management, discussion concentrates on the relationship between the effective utilization of the recruited stocks and the protection of reproductive stock, and on the importance of utilizing the concept of SPR and the life history parameters. Concrete management methods and the strategy required for their introduction are also discussed. Finally, management assuming for fluctuations of recruits and the utilization of Bayesian decision making are overviewed.
目次

第1章 序章
1.1 はじめに .. 7
1.2 論文の構成 .. 7
1.3 記号 ... 8
1.4 一般生態と生活史 ... 9
1.5 系群と再生産関係 .. 10
 1.5.1 系群 .. 10
 1.5.2 再生産関係 .. 11
1.6 イセエビの漁業管理 ... 12
 1.6.1 三重県における現状 ... 12
 1.6.2 イセエビ漁業管理の基本的な考え方 12
1.7 調査対象地区の概要 ... 17

第2章 体長成長データの解析による成長の推定
 2.1 はじめに .. 19
 2.2 解析モデルの構成 ... 19
 2.2.1 基本構成 .. 19
 2.2.2 成長と標準偏差、各群の出現率を表すモデル 20
 2.2.3 パラメータの設定 ... 21
 2.3 適用データ .. 21
 2.4 結果および考察 ... 22
 2.4.1 モデルの妥当性 ... 22
 2.4.2 漁獲物の動別成長と加入および減耗 24
 2.4.3 成長 ... 24
 2.4.4 密度従属成長 .. 25
 2.4.5 剣網の漁獲選択性 .. 26
 2.5 論議 .. 27

第3章 拡張DeLury法による資源評価
 3.1 はじめに .. 30
 3.2 モデルの構成 ... 30
 3.2.1 拡張DeLury法の基本モデル 30
 3.2.2 漁獲率を表すモデル .. 31
 3.2.3 各種数値モデルの導入 31
 3.2.4 パラメータの推定と妥当なモデルの選択、信頼区間の解析 32
 3.3 適用データ .. 33
 3.4 漁獲率を表すモデルの検討 33
 3.5 統計モデルの比較検討 ... 34
 3.6 論議 .. 36

—5—
イセエビの資源評価と漁業管理

第1章 序　章

1.1 はじめに

イセエビは黑潮の影響を直接受ける太平洋沿岸の岩礁域における最も重要な水産資源のひとつである。

イセエビ属のエビ類は、日本沿岸ではイセエビPanulirus japonicus、シマイセビP. penicillatus、カノコイセエビP. longipes、ゴシキエビP. versicolor、ケブカイセエビP. homerus、ニシキエビP. ornatusの6種が漁獲される（岡口1986, 1988）*1,*2* *3*。いずれの種も暖海性で、なかでも最も分布量の多いのがイセエビで、日本全体でのイセエビ類の年間漁獲量1,000〜1,500トンの大部分を占める（井上1981）。

イセエビは主に刺網で漁獲される（野中1988）。イセエビは高価であり、沿岸漁業の対象資源のなかでもっとも重要な位置を占める。本論文において取り上げた三重県における漁獲額は114億円（1993年度）で、浮魚類や回遊魚を除くと魚種別のアサリ類（25.0億）とアワビ類（18.2億）に次ぐ金額となっている。

イセエビに関してはこれまで、権威に関する生態や分布・移動、食性、成長・産卵、幼魚仔期の生態などの方的な生態や飼育、繁殖、生息状態などの研究が精力的になされてきた**2**。いくつかの地域においては、資源尾数推定が試みられている（野中1959、石田・田中1986、金盛1988、木村・高梨1993など）。

1977年の200海里体制への移行を契機として、わが国沿岸域における水産資源の管理と有効利用の重要性が再認識され、多様な魚種において科学的な調査に基づく資源管理型漁業が全国的な規模で推進・展開されるようになった。イセエビについても、水産庁補助事業の資源管理対策推進事業（地域基盤）や資源管理型漁業推進総合対策事業（地域重要資源、沿岸特定資源）などの対象として取り上げられ、近年、関連する調査が増加しつつある。

本論文は、イセエビの望ましい資源管理および漁業管理**2**のあり方に関して指針を示すことである。山川1996）に、三重県沿岸地区のイセエビ刺網漁業を具体例に、資源評価手法と資源（漁業）特性に関する検討を行い、さらに資源の有効利用を達成するための最適な漁獲方策について数値解析による検討を加えたものである。

1.2 論文の構成

本論文の構成は次のとおりである。

第1章ではイセエビの一般生態と生活史、飼育、再生産関係について既往知識の整理を行い、漁業管理の現状も踏まえながらイセエビ漁業管理に関する基本的考え方について論じた。第2章では体長成長解釈をもとに成長、加齢、漁獲物の齢別組成などを検討した。第3章では漁獲量強度データの解析に使用されるDelury法の拡張を行い、環境要因などが漁獲能率が変化する最適モデルを導出した。さらに各種の統計モデルを導入し、妥当モデルの検討と資源評価を実施した。第4章では漁獲量努力量データに基づく資源評価のための複数年齢群モデルを提案し、漁獲能率、漁獲選択性曲線、年ごとの齢別初期資源尾数などの同時推定を行った。

2 Kubo (1954) はこれらの他にP. dasyopus et P. polyphagus を日本産イセエビ類の中に含めたが、P. dasyopus はP. homarus のセゾンイズとされ（Barry 1974），またP. polyphagus はDohlen (1900) による記載があるみち、もし日本に分布するとしてもごく稀な種であると考えられる（Kubo 1954）。したがって上記6種が日本に分布すると考えるのは一般的である。

3 イセエビに関する国内文献をリスト。 協会研究資料34, 日本栽培漁業学会, 1990, 36pp。

4 漁業とは社会経済的な観点から動いている人間の行為である。本論文では、生物学的特性に立脚しながら主として水産生物資源の維持・管理を目的とする人間的行為を「資源管理」、生物学的特性を基に社会の経済的目標を設定して漁業を望ましい状態に維持しようとする管理を「漁業管理」などと呼ぶ。「漁業管理」の概念は「資源管理」を内包する。

—7—
第5章では発掘資源の有効利用を達成するための最適な発掘方策について漁業経済の視点から検討を行い、漁獲効率の最適化について論じた。第6章ではエセレビの生存に与える影響及び発掘方策について論じた。そこで第5章で示した動的な最適化モデルに、産卵に関与する資源量の経済評価に関する項を導入し、産卵量を確保しつつ資源利用の有効利用を計るための漁獲効率の最適化について検討した。最後の第7章において、全体の論理を踏まえながらエセレビの資源評価としてましい漁業管理、および導入方策について展望した。

1.3 記号

本論文中で用いる記号は、全て関係の項でその都度説明するが、ここでは一覧にして示す。（アルファベット順）

<table>
<thead>
<tr>
<th>記号</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>季節的成長の振幅を表すパラメータ</td>
</tr>
<tr>
<td>AIC</td>
<td>赤池情報量規準（Akaike Information Criterion）</td>
</tr>
<tr>
<td>a_{ij}</td>
<td>漁獲量のパラメータ（第3章, 第4章）</td>
</tr>
<tr>
<td>a_{ij}</td>
<td>価値関数式のパラメータ（第5章）</td>
</tr>
<tr>
<td>a_{ij}</td>
<td>体長の標準偏差式のパラメータ（第2章）</td>
</tr>
<tr>
<td>BPR</td>
<td>加入あたり平均バイオマス（Biomass per Recruit）</td>
</tr>
<tr>
<td>BW</td>
<td>体重</td>
</tr>
<tr>
<td>b_{ij}</td>
<td>漁獲量のパラメータ（第3章）</td>
</tr>
<tr>
<td>b_{ij}</td>
<td>価値関数式のパラメータ（第5章）</td>
</tr>
<tr>
<td>b_{ij}</td>
<td>体長の標準偏差式のパラメータ（第2章）</td>
</tr>
<tr>
<td>C</td>
<td>漁獲（除去）数</td>
</tr>
<tr>
<td>C_{ij}</td>
<td>n期の終了時までに除去されなかった数（第3章）</td>
</tr>
<tr>
<td>c_{ij}</td>
<td>単位努力あたり漁獲量（Catch per Unit of Effort）</td>
</tr>
<tr>
<td>CIR</td>
<td>Change in Ratio法</td>
</tr>
<tr>
<td>CL</td>
<td>頭部甲長</td>
</tr>
<tr>
<td>CPUE</td>
<td>単位努力あたり漁獲量（Catch per Unit of Effort）</td>
</tr>
<tr>
<td>d_{ij}</td>
<td>漁獲量のパラメータ</td>
</tr>
<tr>
<td>E</td>
<td>雌1個体あたりの抱卵数または産卵数</td>
</tr>
<tr>
<td>F</td>
<td>漁獲係数（第6章）</td>
</tr>
<tr>
<td>F_{ij}</td>
<td>最近年の漁獲係数（terminal F）（第4章）</td>
</tr>
<tr>
<td>F_{ij}</td>
<td>各体長組成データセットの個体数（第2章）</td>
</tr>
<tr>
<td>f_{ij}</td>
<td>漁獲量のパラメータ（第3章, 第4章）</td>
</tr>
<tr>
<td>f_{ij}</td>
<td>体長組成における階級別個体段階（観測値）（第2章）</td>
</tr>
<tr>
<td>g_{ij}</td>
<td>漁獲物成長とパラメータ</td>
</tr>
<tr>
<td>h_{ij}</td>
<td>ハミルトニアン</td>
</tr>
<tr>
<td>H</td>
<td>漁獲量のパラメータ</td>
</tr>
<tr>
<td>ITQ</td>
<td>漁獲可能個体数当制</td>
</tr>
<tr>
<td>i_{ij}</td>
<td>(Individual Transferable Quota System)</td>
</tr>
<tr>
<td>i_{ij}</td>
<td>体長階級を表す添字（第2章）</td>
</tr>
<tr>
<td>i_{ij}</td>
<td>期間または年を表す添字</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>水温の変化点（期）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>体長を表す添字</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>成長の変曲点を表すパラメータ</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>季節的成長の位相を調整するパラメータ</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>最高齢</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>最小齢</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>体長組成解析における全減少係数の導入</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>成長係数</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>魚の二項分布のパラメータ</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>尤度または対数尤度</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>平均漁獲または平均頭部甲長</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>極限漁獲</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>漁獲量のパラメータ（第3章, 第4章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>雌雄を区分する添字（雌：$l=0$，雄：$l=1$）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>体長階級の中央値（第2章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>大除月（$=29.53\text{日}$）（第3章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>自然死亡係数（第4章, 第5章, 第6章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>慎定すべきパラメータ数</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>資源尾数</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>初期資源尾数</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>体長組成データセットの数（第2章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>体長階級の数（第2章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>期間終了時の残存資源尾数（第5章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>確率</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>初期資源尾数に対する漁獲率（除去率）（第3章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>n期の終了時までの残留率（非除去率）（第3章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>総漁獲数（第6章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>各期における漁獲率（除去率）（第3章, 第4章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>体長組成データセット内での各階級の出現率（第2章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>市場価格（単価）（第5章, 第6章）</td>
</tr>
<tr>
<td>j_{ij}</td>
<td>市場価格の平均的な推移傾向</td>
</tr>
</tbody>
</table>
イセエビの生態評価と漁業管理

<table>
<thead>
<tr>
<th>シンボル</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q<sub>4</sub></td>
<td>体長組成データセットごとの体長階級に含まれる確率（理論値）</td>
</tr>
<tr>
<td>q</td>
<td>渔具損失</td>
</tr>
<tr>
<td>R</td>
<td>Fisher の漁獲率（reproductive value）</td>
</tr>
<tr>
<td>r</td>
<td>Richards の式のパラメータ</td>
</tr>
<tr>
<td>SPR</td>
<td>加入あたり産卵数（Spawning per Recruit）</td>
</tr>
<tr>
<td>SR_1</td>
<td>1 輸卵の性比（雄の尾数／雌の尾数）</td>
</tr>
<tr>
<td>SSBR</td>
<td>累積漁獲尾数（第 3 章）</td>
</tr>
<tr>
<td>T</td>
<td>期間の終了時（第 5 章）</td>
</tr>
<tr>
<td>t</td>
<td>命もしくは漁獲終了時（第 6 章）</td>
</tr>
<tr>
<td>t_{max}</td>
<td>総漁獲尾数（第 3 章）</td>
</tr>
<tr>
<td>t_{s}</td>
<td>時刻または日を表す添字</td>
</tr>
<tr>
<td>t_{w}</td>
<td>水温の 5 年平均値（第 3 章）</td>
</tr>
<tr>
<td>u</td>
<td>渔具能率式のパラメータ</td>
</tr>
<tr>
<td>V</td>
<td>直接損失</td>
</tr>
<tr>
<td>u_{v}</td>
<td>渔具能率式のパラメータ</td>
</tr>
<tr>
<td>w</td>
<td>10 月における最初の新月の日</td>
</tr>
<tr>
<td>w_{v}</td>
<td>体重（第 5 章）</td>
</tr>
<tr>
<td>w_{m}</td>
<td>波流指数（第 3 章）</td>
</tr>
<tr>
<td>X_{r}</td>
<td>渔獲努力量</td>
</tr>
<tr>
<td>X_{m}</td>
<td>渔獲努力量の上限</td>
</tr>
<tr>
<td>X^*</td>
<td>最適漁獲努力量</td>
</tr>
<tr>
<td>Y</td>
<td>渔獲量</td>
</tr>
<tr>
<td>YPR</td>
<td>加入あたり漁獲金額（Yield per Recruit）</td>
</tr>
<tr>
<td>y</td>
<td>混獲物による単位努力あたり収入</td>
</tr>
<tr>
<td>Z</td>
<td>全漁獲数</td>
</tr>
<tr>
<td>z</td>
<td>渔獲能率式のパラメータ</td>
</tr>
<tr>
<td>a</td>
<td>データセット番号を表す添字（第 2 章）</td>
</tr>
<tr>
<td>θ</td>
<td>渔獲選択曲線のパラメータ</td>
</tr>
<tr>
<td>β</td>
<td>渔獲選択曲線のパラメータ</td>
</tr>
<tr>
<td>δ</td>
<td>価値の割引率</td>
</tr>
<tr>
<td>η</td>
<td>打撃係数（impact coefficient）</td>
</tr>
<tr>
<td>Θ</td>
<td>未知パラメータ（ベクトル）</td>
</tr>
<tr>
<td>θ</td>
<td>未知パラメータ（成分）</td>
</tr>
<tr>
<td>λ</td>
<td>最大漁獲における補助変数</td>
</tr>
<tr>
<td>μ</td>
<td>平均値</td>
</tr>
<tr>
<td>π</td>
<td>円周率（第 2 章）</td>
</tr>
<tr>
<td>π</td>
<td>集団漁業による単位努力あたり利益（第 5 章）</td>
</tr>
<tr>
<td>$\text{p} (L)$</td>
<td>平均体長 L の群に対する漁獲選択率（相対的漁獲効率）</td>
</tr>
</tbody>
</table>

1.4 一般生産と生活史

イセエビは通常、千葉県以南の太平洋沿岸、瀬戸内海を除く四国、九州全域、奄美諸島、台湾に分布する。時として茨城県あるいは福島県にまで分布することはあるが、本州日本海沿岸に分布しない（井上 1981）。また、小笠原諸島や沖縄本島にも分布しない（関口 1989）。

イセエビの繁殖期は日本の分布域全体についてみると 4 月下旬から 9 月下旬に及ぶ。盛期は海全域によって遅れがあり、全国各地では 5 月～7 月、和歌山県では 6 月～7 月、神奈川県や神奈川県では 7 月上旬～8 月上旬、千葉県では 7 月上旬～8 月中旬である（井上 1981）。抱卵エビの保護のため、産卵期間は各県の漁業調整規則によって禁漁期に定められている（図 1－1）。

図 1－1．各県漁業調整規則によるイセエビの繁殖期間と漁獲制限体長

* 出典：沿岸漁業事務局発行『沿岸漁業計画指針・マグロ・イセエビ編』p.777（漁業遺伝計画協議会編集委員会編，全国沿岸漁業振興開発振興協会発行 1988）。
イセエビの初期生活史については、不明な点が多い。

1.5 系群と再生産関係

資源管理の立場において根本で最も重要な事項は、①管理対象とする資源の再生産の及ぼす影響の広がり、すなわち、系群の存在の有無とその地理的範囲、および②親仔の魚礁的関係（再生産関係）であろう。本節ではイセエビ資源の系群と再生産について、既往文献による考え方をもとに整理する。
も不明として扱わざるを得ない。
近年、魚類ではmt-DNAなどの遺伝学的解析手法による系統解析が精力的に行われ、興味深い成果が多数報告されている。イセエビ類についても外国産の種では、種間の系統類縁関係の解析などにこのような手法が活用されるようになってきたが（Brasher et al. 1992a, 1992b, Ovenden et al. 1992, Ovenden and Brasher 1994）、日本周辺海域のイセエビ類に関しては未着手である。今後、地域別漁獲量の時系列解析などと併せて、このような手法を取り入れ、系統解析に関する実証的研究の待たれるところである。

1.5.2 再生産関係
日本全国のイセエビ資源は単一系群より成ると仮定し、1915年以降の全国の漁獲統計（図 1－4 a）を用いて、n 年の漁獲量に対する (n+2) 年, (n+3) 年, (n+4) 年の漁獲量の相関を試作した（図 1－2）。x 軸（n 年の漁獲量）の値が1,000t～1,500tの間に集中しており、年代によって漁獲率が異なる可能性もあるため、再生産関係の検討を行うに十分なデータであるとはいえない。日本産イセエビについては、再生産関係は今後の検討課題である。

** " 図 1－2. 渔獲統計資料をもとにしたイセエビの再生産関係の試作。
日本全体の n 年の漁獲量に対する a. (n+2) 年, b. (n+3) 年, c. (n+4) 年の漁獲量の関係を示す。
1.6 イセエビの漁業管理

1.6.1 三重県における現状

第9次漁業センサス**によって、イセエビを対象とする漁業管理組織は1993年11月1日現在で全国に延べ214組織あり、魚種別ではアワビ類の547組織、サザエの358組織、ウニ類の92組織に次ぐ多い。

イセエビ刺網漁業の具体的な管理方針には、漁獲期間や漁獲日数の設定、漁獲制限体長（または頭胸甲長）の設定、漁具の制限（網の種類、網目の大きさ、糸の太さ、材料、網形など）、休漁、漁期の短縮、輪採、小型個体の再放流など様々なものがある（木下1933、野中1959、大島1962、丸山・平井1964、Nonaka and Fushimi1994）。漁獲期間と漁獲制限体長については、各県の漁業調整規則で定められている（表1-1）。三重県では、5月1日から9月30日が漁獲期間に定められている（ただし、鳥羽市離島地域以外の海域においては、5月1日から9月15日まで、頭胸甲長4.2cm以下のエビは採捕および所持・販売が禁じられている）。

表1-1に、三重県内の各地先におけるイセエビ刺網漁業の管理実態を、1993年に実施したアンケート調査結果により示した。三重県漁業管理規模による漁獲制限サイズ（県漁業管理規則による制限は体重で60〜70gに相当する）や漁獲期間を主にどの程度を設定している地域もみられる。網の種類に関しては、刺網および有用網のみを用いている地区、三重県の有用網を用いている地区、両方の網を用いている地区があり、網目の大きさ、網糸の大きさ、網の高さ（掛目）、長さ、1セットあたりの使用網数なども差異である。魚獲実績方法についても、魚獲量誌を採用している地域、輪採製を踏いている地域、自由操業の地区、グルーパによる共同操業の地区などがあり、小型エビの再放流サイズ、市場における銘柄区分も様々である。概して鳥羽・志賀など北部の地域では、1比較の大きな漁船で③刺網を使用し、③自由操業で④操業水深は深く、⑥漁獲物全体に占める魚種の比重（金額）が高く、⑧再放流エビのサイズが小さい地域が多い傾向にある。一方、尾鷲・熊野など南部の地域では、①小型の漁船で②刺網を使用し、③操業水深を採用して④操業水深が浅く、⑥漁獲物全体に占めるイセエビの比重（金額）が高く、⑧再放流エビのサイズが大きい地域が多いた傾向にある。

総合一覧網からナイロン三枚網への移行は昭和20年代または30年代（1945〜1965年）と回答した地域が多かった。

1.6.2 イセエビ漁業管理の基本的な考え方

日本産イセエビは既述のように、系群や再生産関係が不明である。仮に系群の範囲が特定されても、地元にごとに管理の形態が大きく異なるため、日本全国が一体となって協調的な管理を実施できる体制や背景が整っているとは言い難い。イセエビの資源管理において可能な実用的対策としては、「地元ごとの加入資源の有効利用の視点に基づく管理を主体とし、それに加入あたり産卵量の概念を組み合わせて構成する」のが現状では妥当と考えられる。

加入資源の有効利用においては経済学的な視点（Clark1976, Clark1985, Doll1988, Hannesson1993など）が重要である。管理を行う主体は経済活動を営む「漁家」であることを考慮すれば、資源の有効利用の観点にあたっては漁家経営全体を視野に入れた論議が必須である。イセエビ資源から直接得られる漁獲量や漁獲

注 農林水産省統計情報部；[II]漁業管理組織に関する統計、第9次漁業センサス第2報、農林水産省経済局統計情報部編、農林統計協会、東京、1995、pp.155-211.
<table>
<thead>
<tr>
<th>地区</th>
<th>海老漁船</th>
<th>使用漁船数</th>
<th>インバシオン</th>
<th>漁業管理組織</th>
<th>漁業数</th>
<th>漁業期間</th>
<th>休漁、休漁禁制</th>
<th>主漁場の水深</th>
<th>漁場使用の方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65隻</td>
<td>3〜10隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>9/1〜4/30</td>
<td>正月4〜14日、土曜日、祝日、日曜日</td>
<td>毎週土曜日、日曜日（4月は除く）</td>
<td>15〜30m</td>
<td>先着順、順次漁を決定</td>
</tr>
<tr>
<td>2</td>
<td>8隻</td>
<td>1〜3.5隻</td>
<td>2〜3名</td>
<td>高座組合</td>
<td>9/1〜4/30</td>
<td>毎週土曜日、日曜日（4月は除く）</td>
<td>自由漁業、漁業時間制限</td>
<td>10〜40m</td>
<td>先着順、順次漁を決定</td>
</tr>
<tr>
<td>3</td>
<td>7隻</td>
<td>3〜5隻</td>
<td>2〜3名</td>
<td>高座組合</td>
<td>9/1〜4/30</td>
<td>毎週土曜日、日曜日（4月は除く）</td>
<td>自由漁業、漁業時間制限</td>
<td>10〜40m</td>
<td>先着順、順次漁を決定</td>
</tr>
<tr>
<td>4</td>
<td>4隻</td>
<td>1〜5隻</td>
<td>1〜2名</td>
<td>海老釣り会合</td>
<td>10/1〜12/8</td>
<td>毎週土曜日および休業日の前日</td>
<td>33〜45m</td>
<td>年末、平日漁を禁止し、順次漁する</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13隻</td>
<td>4〜10隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>12/9〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>7.5〜15m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48隻</td>
<td>0.7〜1.5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>12/9〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>30〜40m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15隻</td>
<td>1.5〜8.5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18隻</td>
<td>1〜5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9隻</td>
<td>0.5〜1.5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25隻</td>
<td>0.4〜12.5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>13隻</td>
<td>1.4〜6.5隻</td>
<td>1〜2名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21隻</td>
<td>1〜1.5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>36隻</td>
<td>5〜15隻</td>
<td>1〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15隻</td>
<td>1〜2.5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15隻</td>
<td>0.8〜9.0隻</td>
<td>1〜2名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>40隻</td>
<td>0.8〜1.5隻</td>
<td>2〜3名</td>
<td>海老釣り会合</td>
<td>1/1〜4/30</td>
<td>毎週土曜日、日曜日</td>
<td>20〜30m</td>
<td>先着順、順次漁を決定</td>
<td></td>
</tr>
</tbody>
</table>

注: 豊富な資料や詳細な情報は掲載されていません。
<table>
<thead>
<tr>
<th>地区</th>
<th>結果</th>
<th>仮想</th>
<th>実効</th>
<th>仮想の場合</th>
<th>実効の場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>2.</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*上記結果は、仮想と実効の両方についてのデータを示しています。
<table>
<thead>
<tr>
<th>地区</th>
<th>熱帯区</th>
<th>熱帯区の利用方法</th>
<th>同放流実績</th>
<th>配列区分</th>
<th>イセエビ漁獲量（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>533-4-H3 平均 H3 最高年</td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.1</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.2</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20.5</td>
<td>38.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.4</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.3</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.2</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.6</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.4</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.3</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.3</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.1</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6.4</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.5</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.4</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.8</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.3</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.1</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.3</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.0</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.7</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2.0</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.3</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1.3</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.1</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表1-1 絧

1. 熱帯区の利用方法
2. 同放流実績
3. 配列区分
4. イセエビ漁獲量（kg）
<table>
<thead>
<tr>
<th>地区</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>昭和10年頃より3枚網を使用。メの網は昭和30年頃から。昭和50年頃までは船が小さく(1〜2Span),網数は2はえ位であった。昭和58年頃から船の大型化と魚数の増加のため、使用網数を削減。</td>
</tr>
<tr>
<td>3</td>
<td>昭和10年頃に鯨狩り3枚網を関西地区より導入(2隻)。昭和25年より1枚網使用。昭和30年より3枚網を全面使用。魚の網数は30番手3つ縫い3つ。網数は32mm×12×4であった。</td>
</tr>
<tr>
<td>5</td>
<td>魚撰漁業(1/5〜4/30)</td>
</tr>
<tr>
<td>3</td>
<td>3枚網の使用は昭和に始まる。メの3枚網への移行は戦後に始まってから。魚の網は魚数で太かったが、魚数で細くなった。昭和10年頃までは6丈、以後は5丈</td>
</tr>
<tr>
<td>8</td>
<td>竹野より3枚網使用。</td>
</tr>
<tr>
<td>9</td>
<td>昭和35年頃からメの3枚網へ逐次移行。</td>
</tr>
<tr>
<td>11</td>
<td>昭和34年頃からメの3枚網へ逐次移行。</td>
</tr>
<tr>
<td>12</td>
<td>関西60〜80日程度漁業。昭和40年頃からメの3枚網へ逐次移行。 (以前は 国老:鯨狩り1枚網、鯨狩り3枚網)</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>昭和22〜25年頃より3枚網を使用。メの網へは昭和27〜28年頃。昭和40年以前は12丈/隻だったのを現在の網数(10丈)/隻へ。</td>
</tr>
<tr>
<td>17</td>
<td>昭和22年頃からメの3枚網へ移行。現在は実施なし。</td>
</tr>
<tr>
<td>19</td>
<td>昭和26年頃より3枚網を使用。メの網へは昭和30年頃に衝突する。昭和30年頃にそれ以前の14丈/隻から現在の網数(13丈)/隻へ。</td>
</tr>
<tr>
<td>20</td>
<td>昭和33年の総合で三枚網の使用禁止を決議。現在に至る。</td>
</tr>
<tr>
<td>21</td>
<td>昭和30年頃からメの3枚網へ移行。太さ、目合、仕立上げ長は以前から変化なし。</td>
</tr>
<tr>
<td>22</td>
<td>昭和30年頃からメの3枚網へ移行。使用網数は以前から変化なし。</td>
</tr>
<tr>
<td>24</td>
<td>昭和30年頃からメの3枚網へ移行。使用網数は以前から変化なし。</td>
</tr>
<tr>
<td>25</td>
<td>昭和30年頃からメの3枚網へ移行。使用網数は以前から変化なし。</td>
</tr>
<tr>
<td>26</td>
<td>昭和30年頃からメの3枚網へ移行。使用網数は以前から変化なし。</td>
</tr>
<tr>
<td>27</td>
<td>昭和30年頃からメの3枚網へ移行。使用網数は以前から変化なし。</td>
</tr>
<tr>
<td>28</td>
<td>昭和30年頃より3枚網を使用。メの網へは昭和28〜30年頃。1枚網の網の網は12丈/隻であった。つれ内の網数は12〜4月魚、それ以後は10,11月。</td>
</tr>
<tr>
<td>29</td>
<td>昭和40年頃より3枚網を用いる。使用網数は以前から変化なし。</td>
</tr>
<tr>
<td>30</td>
<td>昭和30年頃より3枚網を使用。</td>
</tr>
<tr>
<td>31</td>
<td>昭和30年頃より3枚網を使用。</td>
</tr>
<tr>
<td>32</td>
<td>昭和30年頃より3枚網を使用。</td>
</tr>
<tr>
<td>33</td>
<td>昭和30年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>34</td>
<td>昭和38年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>36</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>37</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>38</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>39</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>40</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>41</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>42</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
<tr>
<td>43</td>
<td>昭和40年頃より3枚網を使用。メの網へは昭和23年頃に導入。魚の網の網は7丈/隻、20番手8尾網であった。昭和15,16年頃にそれまでの鯨こぎ船(4〜5尾、2,3名、計7隻)から21尾こぎ船へ。</td>
</tr>
</tbody>
</table>
1.7 調査対象地区の概要

本論文では三重県のなかで最多漁獲量の多い和具漁業協同組合（図1-3、表1-1の地区番号13）を調査対象地区として取り上げた。

図1-4 a、図1-4 b、図1-4 cにそれぞれ、日本全国（1905年〜1993年）、三重県（1904年〜1993年）および和具漁協（1956年〜1993年）におけるイセエビ漁獲量の経年推移を示した。全国における漁獲量は、第二次世界大戦以前（1941年以前）は一貫して増加傾向にあったが、戦後（1946年以降）は1964年のピーク（1,845トン）を迎えたあとは減少し、1975年以后は1,000〜1,200トンの水準で推移している。三重県における漁獲量は、戦前は全国での傾向と同様に増加した。戦後は1952年に最高の296.6tを記録した後、1970年代前半まで減少が続き、以後は100〜150tの間を推移している。和具漁協における漁獲量は、1963年に計画期間中最高の38.6tで、1970年代前半には県全体の傾向と同様に減少した。1979年には30tを記録したが、以後は20t前後を推移している。期間中の平均漁獲量と変動係数はそれぞれ、全国では1,238t、20.8%、三重県全では166.9t、29.9%、和具漁協では20.7t、28.4%であった。

和具地区では、36隻のイセエビ刺網漁業者で構成される漁業者組合（「海老網同盟会」と称する）が漁業の下部組織として運営されており、漁業者同志の話し合いと合意形成をもとにした管理の推進母体として機能している。当地区では漁場を、休漁日以外なら会員が自由に操業できる「一般漁場」と、通常は禁漁として一定の期間だけ共同（水揚げノルム）で操業を行う「禁漁区」に区分している。そのうち、「一般漁場」での年間漁獲
量は全漁獲量中の70〜80％を占める。

漁期は三重県漁業調整規則と同じ10月1日〜4月30日である。毎年第2、第4金曜日と正月前後は休漁とするほか、近年では満月前後の旧暦14日〜18日は同盟会の申し合わせによって休漁としている。

漁業は、10トン前の船（通常2名、場合によっては3名が乗船）で三枚網を使用して行う。毎日15時にお送りに港を出港後、各自が思い思いの漁場に入網して1晚放置し、翌日の早朝に揚網する。使用網数は1隻あたり13丈以下（1丈の長さは網地長で200間（≒300m）、仕立て上り長で約140m）と定めているが、漁獲量が多く、価格の低下が懸念される時期には9〜10丈以下とするなど、弾力的な運用がなされている。網目の大きさは2寸3分（船尾；1寸は3.7875cm）以上、太さは10本撮り以上と決められている。揚網は動力ローラーを用いて網をエビごと船上に巻き取って行う。陸上へ運ばれた網は1船あたり5名〜10名（平均7.7名）で揚げ、イセエビやその他の獲物が網から外されて仕分けされる。揚網水深は3mから80mにあり、イセエビが通常、生息する水深のほぼ全範囲を網羅しているとみなすことができる。

一般漁場における水深別の延べ出漁数数と漁獲重量を年別に集計し、図1〜5に示した。

漁獲されたイセエビの大きさの別なくすべてが一票、市場へ集められる。市場職員によって「大（380g以上）」、「中」（120 g〜380 g）、「小」（80 g〜120 g）、「ボロ」（脚や触角が著しく損傷した個体）の各銘柄に仕分けられる過程で、自主的な取り決めによる制限サイズ以下の小型エビが選別され、同盟会役員の手で後日、まとめて漁場へ再放流される。小型エビの制限サイズは三重県漁業調整規則による制限サイズ（体重60〜70 gに相当）より引き上げ、一般漁場では体重80 g以下、禁止区では120 g以下とされている。小型エビの再放流実績は毎年15,000尾程度に達する。

第2章 体長組成データの解析による成長の推定

2.1 はじめに

対象生物の成長の把握は、水産資源の解析における最重要事項のひとつである。成長の推定結果によって業界の新しい資源管理のあり方が大きく左右されることも稀ではない。

しかし、飼育実験で得られた成長が海域環境のものと同様である証明なく、標識放流による方法も、①標識の着生が成長、生殖に与える影響が不明、②解析に十分なデータ数が確保しにくい、③得られる情報が放流時と再捕時のものに限られるため季節の成長を把握し難しい、などの問題点がある。

鈴岡水試伊豆分場（1975**, 1976**）は離島別に集計した頭胸甲長組成の検討により、静岡県南伊豆のイセエビの成長を推定した。これは、Harding（1949）の正規確率紙を用いた方法で複合正規分布への分解を行ったものであるが、①作図による分離手法であるため客観性に欠ける、②1セットの測定データに基づく推定であるため信頼性に疑問が残る、などの難点がある。

本稿では、経時的な複数の体長組成データの一括解析において、年などによる成長の変動があっても解析可能な手法を提示するとともに（Yamakawa and Matsumiya 1997）、イセエビの頭胸甲長組成データに適用し、漁獲物の鈎長組成、成長、加入、減耗過程などを精査した（山川1997a, 1997b）。

2.2 解析モデルの構成

2.2.1 基本構成

ある期間中に市場に出荷された漁獲物を母集団とし、経時的に採取された複数の体長組成データを考える。各回におけるサンプリングはランダムに行われ、測定誤
差は無視できると仮定する。

第 a 番目の体長組成データセット a からランダムに個体を抽出する場合に、その個体が体長階級 i に含まれる確率（理論値）を \(Q_{ia} \) とする。データセット a の体長階級 i に含まれる個体頻度（観測値）を \(f_{ia} \) 、データセット a の総個体数を \(F_a \) とするととき、\(|f_{ia}| \) を得る確率 \(P \) は多項分布を用いて次のように表せる。

\[
P = \frac{N_i}{\sum_{i=1}^{N_i} \left(\frac{F_a}{\sum_{i=1}^{N_i} Q_{ia}} \right) \left(\frac{N_i}{\sum_{i=1}^{N_i} Q_{ia}} \right)^{N_i}}
\]

ここで \(N_i \) : データセットの数
\(N_i \) : 体長階級の数
である。

データセット a における j 階級の体長頻度分布が正規分布 \(N \left(L_{ja}, \sigma_{ja}^2 \right) \) に従うと仮定すると、\(Q_{ja} \) は複合正規分布として次のように表せる。

\[
Q_{ja} = \frac{p_{ja}}{\sqrt{2\pi}\sigma_{ja}} \exp \left[-\frac{(L_{ja} - \bar{L}_{ja})^2}{2\sigma_{ja}^2} \right]
\]

ここで \(p_{ja} \) : データセット a 内での j 階級の出現率、
\(\omega \) : 体長階級幅、
\(L_i \) : 体長階級 i の体長中央値、
\(j_{\min} \) : 最小齢、
\(j_{\max} \) : 最高齢、
\(L_{ja} \) : データセット a における j 階級の平均体長、
\(\sigma_{ja} \) : データセット a における j 階級の体長の標準偏差。

ただし、

\[
\sum_{j=1}^{N} p_{ja} = 1
\]

である。

以上の基本モデルに、\(L_{ja} \) 、\(\sigma_{ja} \) 、\(p_{ja} \) を表現するいくつかの制約モデルを導入し、パラメータの同時推定を行う。最大化を行う目的関数は対数尤度 L とした。

\[
L = \ln(P) = \sum_{j=1}^{N} \ln(f_{ja}! - \sum_{i=1}^{N} \ln(f_{ia}!))
\]

\[
+ \sum_{j=1}^{N} f_{ja}! \ln(Q_{ja})
\]

モデルの妥当性の判定は赤池情報量規準(AIC; Akaike Information Criterion, Akaike 1973) で行った。

\[
\text{AIC} = -2 \ln(P) + 2M
\]

ここで \(M \) は推定すべきパラメータの数である。

2.2.2 成長と標準偏差、各群の出現率を表すモデル

成長を表すモデルには、Richards の一般式に季節的成長を導入した Akamine (1993), 赤嶺 (1995a) の標準式を用いた。年などによる成長変動があっても解析が可能のように、パラメータはデータセットごとに設定する(Yamakawa and Matsumiya 1997)。

\[
L_{ja} = \left[1 + r \exp \left(-K_a(G(j, a) - G(j_{ja}, a)) \right) \right]^{1/r}
\]

\[G(j, a) = j + A_a \sin 2\pi(j - j_{ja}) \quad (27)
\]

ここで、
\(L_{ja} \) : データセット a における極限体長。
\(r \) : 式の形に係るパラメータ。
\(K_a \) : データセット a における成長係数。
\(j_{ja} \) : データセット a における成長期の変曲点を表すパラメータ。
\(A_a \) : データセット a における季節的成長の大きさ（振幅）を表すパラメータ。
\(j_{ja} \) : データセット a における季節的成長の位相を調節するパラメータ。

である。

上式は \(r = 1/3 \), 0, 1 のときにそれぞれ、von Bertalanffy 式、その 3 乗式、Gompertz 式と一致する(Akamine 1993, 赤嶺 1995a)。
(2.7)式で \(A_a = 0 \) と置いて固定すれば、季節的成長を導入しないモデルとなる。各群の体長の標準偏差 \(\sigma_{ja} \) を表すモデルには様々なものが考えられる。ここでは以下の 4 通りが選択できるように設定した。

① \(\sigma_{ja} = a_0 \) （定数）

② \(\sigma_{ja} = a_{0,j} + b_{ja} \) （線形）

③ \(\sigma_{ja} = \frac{c_{ja}}{1 + \exp(a_{1,j} - b_{ja})} \)

(シグモイド型; ロジスティック曲線)

④ \(\sigma_{ja} = \frac{c_{ja}}{1 + \exp(-b_{ja})} \quad (28)
\]

(Tanaka and Tanaka 1990 の式)。

\(a_0 \), \(b_{ja} \), \(c_{ja} \) : パラメータ。

各群の出現率 \(p_{ja} \) は、
①(2.3) 式を除いて制約条件を全く仮定しない場合、
②ある群 (\(j_{ja} \) 以上) の群では次式のように、全減少係
数 \(Z_n \) に従って減耗すると仮定する場合

\[
p_{li} = p_{li} e^{-az(l-j)}
\]

（2.12）

の2通りについて解析を行った。ここで、加入量、および \(j_0 \) 以下の減耗率は年によって変動しないと仮定した。

本論文ではサイズによる漁獲選択性に起因する、加入群の平均体長の偏り（Fournier et al. 1990）を考慮に入れなかった。しかしサイズに従う高い漁獲選択性が存在すると、加入群に達した群の漁獲内分布する個体の平均体長は、実際に漁獲された個体の平均体長とは異なるため、推定結果に偏りが生じる恐れがある。その影響を避けるため、（2.2）式に従う漁獲選択性 \(\rho(l_i) \) を導入し、

\[
Q_{li} = \frac{\sum l_i}{\sum l_i} \cdot \rho(l_i) \cdot \frac{p_{li} \cdot \omega}{\sqrt{2\pi} \cdot \sigma_{li}} \cdot \exp \left(\frac{-(l_i - \bar{L}_{li})^2}{2\sigma_{li}^2} \right)
\]

（2.13）

として解析を行うことができる。この \(\rho(l_i) \) は、シグモイド型の曲線（ロジスティック曲線：4.4 式）などが仮定できる。

2.2.3 パラメータの設定

年によって成長の変動がある場合にも一括解析が可能のように、各パラメータはデータセットごとに異なる、複数の値を探るようになる。例えば成長変動のために成長係数 \(K_n \) の値が年によって異なると考えられる場合には年ごとに別個の \(K_n \) を設定できるようにし（年にによってパラメータを「共有」し、と称する）、逆に成長変動が無視できる場合にはすべての年について共通の \(K_n \) を設定（すべての年でパラメータを「共有」）できるようにした。共有/非共有の選択は各パラメータごとに独立に行われるため、例えば、 \(K_n \) と \(a_n \) は年ごとに「非共有」として \(L_{\infty} \) と \(A_n \) はすべての年で「共有」する。いずれのパラメータも基本的には「共有」とするが1年目と3年目は \(L_{\infty} \) のみを「非共有」とする、などの自由な設定が可能である。また、「年」に限らず任意のデータセット間でパラメータの共有/非共有が選択できるため、年内の前半と後半で別のパラメータを用いることなども自由である。共有/非共有の選択は成長法に関係するパラメータのみならず、標準偏差に関するパラメータや全減少係数（およびその導入群 \(j_0 \) ）についても同様に行われる。この手法によればどのようなデータでも一括解析が可能となるため、データの情報量の損失を極力回避しながら推定で強力的な推定が行える。

一方、各パラメータは、未知として推定の対象にするか、あるいは既知としてあらかじめ設定した値に固定するかを、任意に選択できるようにした（推定/固定の選択）。例えば、成長係数 \(L_{\infty} \) は年齢形成法で求めた値に固定して他のパラメータの推定に利用する。また、成長法は固定してて各群の出現率の推定のみを行う、などの利用が可能である。他の情報源によって推定された値を既知として導入することにより、当該の解析だけでは情報量が不足していて結果が不安定になるような場合でも頑健な推定を行うことができる。なお、当手法の詳細についてはYamakawa and Matsumiya（1997）も併せて参照された。

2.3 運用データ

甲長は、ノギスを用いて0.1mm単位で個体ごとに測定した。解析は、雌雄別に集計した1mm間隔の階級区分ごとの出現個体数（頻度）を基に行った。測定個体数は合計で62,605個体（雄：38,488個体、雌：24,119個体）であった。これは、調査期間中に一般漁場で漁獲された全個体数のおよそ14%に相当する。

解析に用い、表2－1に示したA～Hの9通りのモデルを仮定して、比較検討した。成長法は、（2.6）式で \(r = -1 \) と置いてvon Bertalanffy 式に固定した。季節的成長を導入する場合としない場合について解析し両者を比較した。標準偏差を表すモデルについては（1）（一定；2.8式）と（4）（Tanaka and Tanaka 1990の式；2.11式）の2通りで比較を行った。各群の出現率に関して制約条件を全く仮定しない1の場合は、年齢群 \(j_{max} - j_{min} + 1 \) は4～6群の2通りを仮定し、全減少係数を導入した2の場合は導入群 \(j_0 \) が4群の2通り（この場合は群数はいずれも10群）とした。パラメータの共有/非共有の設定では、全てのパラメータを「共有」とする場合と、成長係数 \(K_n \) と変曲点 \(A_n \) のみを年ごとに「非共有」とする場合を設定した。仮定した
パラメータは固定せずに全てを未知として推定した。
なお、ここで「年齢」と称するのはプレルースとして着
底後の推定経過年数を指す***。

2.4 結果および考察

2.4.1 モデルの妥当性
仮定したモデルの妥当性を検討するため、(2.5)式に
よるAICを計算し表2-1に併記した。
比較を行った9通りのモデルのうち、雄雌ともにモデ
ルAでAICの値が小さくて、妥当性が最も高いと判断され
た。季節の成長を導入しないモデルBでは季節の成長を
導入したモデルAよりも妥当性が低下した。成⾧の標準
偏差を一定とした場合(C)も、④の2.11式に従って
標準偏差が変化すると仮定したAの場合に比べて妥当性
が低下した。全減少係数を導入しないモデル(D~F)よ
りも導入したモデル(A, H)で妥当性が高く、さらに
3年齢以上の群が全減少係数に従って減食すると仮
定したモデルG, Hよりも4年齢以上の群に全減少係数を
導入したモデルAで妥当性が高かった。パラメータを
すべての年で共有し、成長の反応度を考慮しないモデル
Jでは、成長式のパラメータKs*とj*を年によって非共
有としたAの場合に比較して妥当性が著しく低下した。成
長には年によって相当ばらつきがあることが示唆され
た。

<table>
<thead>
<tr>
<th>モデル</th>
<th>季節的成長</th>
<th>標準偏差式</th>
<th>全減少係数</th>
<th>際群数</th>
<th>成⾧の年変動</th>
<th>AIC雄</th>
<th>AIC雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>①</td>
<td>(4歳以上)</td>
<td>10</td>
<td>○</td>
<td>7923.26</td>
<td>5846.71</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>①</td>
<td>(4歳以上)</td>
<td>10</td>
<td>○</td>
<td>8886.51</td>
<td>5977.47</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>①(一定)</td>
<td>(4歳以上)</td>
<td>10</td>
<td>○</td>
<td>7991.79</td>
<td>5981.88</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>④</td>
<td>-</td>
<td>4</td>
<td>①</td>
<td>7960.62</td>
<td>6109.94</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>④</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>7938.24</td>
<td>6034.28</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>④</td>
<td>-</td>
<td>6</td>
<td>①</td>
<td>7957.94</td>
<td>6020.52</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>④</td>
<td>(5歳以上)</td>
<td>10</td>
<td>②</td>
<td>7929.02</td>
<td>5861.24</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>④</td>
<td>(6歳以上)</td>
<td>10</td>
<td>①</td>
<td>7904.73</td>
<td>5861.24</td>
</tr>
<tr>
<td>J</td>
<td>○</td>
<td>④</td>
<td>(4歳以上)</td>
<td>10</td>
<td>-</td>
<td>8586.14</td>
<td>6159.32</td>
</tr>
</tbody>
</table>

1 ①(2.7)式のA、j*ともに未知として推定、-: (2.7)式でA* = 0 と固定。
*2 ①: (2.8)式を導入して一定とする、①: (2.11)式を導入する。
3 ○: (2.12)式に従ってカッコ内の義 (j 以上の群に全減少係数Z*を導入する、
 -: Z*を導入しない。
4 j = j* + 1。
*5 ○: 導入する (Ks*とj*を年ごとに「非共有」とし、その他のパラメータは
 「共有」とする)。-: 導入しない (すべてのパラメータを「共有」して推定)。
*6 (2.5)式による。
*7 モデルAが最も妥当性が高い。

*** フィロソマの期間が不明で生後の「年齢」の特定ができないため、便宜的にこのような呼称を用いることにする。本論文では
以下すべて同様である。なお、齢の起算はプレルースの着底時期である8月1日を基準に行うものとする。すなわち、8月1日
を加齢日として計算する。

—23—
2.4.2 渓物の齢別組成と加入および減耗
妥当性が最も高いと判断されたモデルAについて、体長組成解析によるデータセット別の各齢群への分離結果を雌雄別に図2-1と図2-2に、各齢群の出現率の詳細を表2-2に示した。

和具地区での漁獲の主群は雌雄ともに2齢群であった。漁獲への加入は1齢群では不完全で、漁期の進行とともに加入の増加が認められた。雌の1齢群の加入は漁に比べて遅れる傾向にあった。3齢以上の高齢群の出現率は低く、ピークは不明瞭であった（図2-1，図2-2）。

1齢群の加入状況は年によって相違していた。例えば、1991年-1992年漁期の前半には2齢群が漁獲の主群であったのに対し、1992年-1993年漁期では10月時点で相当数の1齢群が加入しており、漁期の進行に伴って大部分が1齢群で占められるようになっている（図2-1）。
雌では、1991年-1992年漁期には1齢群の加入は少数であったが、1992年-1993年漁期では相当数の1齢群の加入が認められた（図2-2）。

加入の完了としたと考えられる2齢群について、3齢までの生残率を計算すると、全データセットの平均値で雄：25.0％、雌：28.5％となった。すなわち、自然死亡と漁獲による減耗を合わせて年間7～8割の減耗率ということになり、拡張Delury法による推定漁獲率の値（65％：第3章）も考慮に入れ、2齢以上の群に対する漁獲圧が相当高いことがわかる。

2.4.3 成長
成長のパラメータの推定結果を表2-3に、推定された成長曲線を図2-3に示した。
成長には雌雄差があり、雌より雄の方が遅く成長すると推定された。季節的な成長変動がみられ、冬に雌雄ともに成長が停滞した。年によって成長に差がある。

| 表2-2．体長組成解析におけるモデルAでのデータセットごとの齢別出現率α_aの推定結果。 |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|
| | 齢別出現率（α_a） | | | | | | |
| | 齢別出現率（α_a） | | | | | | |
| 1990年10月 | 0.317 | 0.553 | 0.107 | 0.013 | 0.126 | 0.517 | 0.345 | 0.003 |
| 1991年4月 | 0.646 | 0.221 | 0.124 | 0.005 | 0.202 | 0.633 | 0.130 | 0.009 |
| 1991年10月 | 0.106 | 0.771 | 0.093 | 0.017 | 0.036 | 0.715 | 0.236 | 0.003 |
| 1991年11月 | 0.356 | 0.517 | 0.115 | 0.007 | 0.142 | 0.563 | 0.252 | 0.011 |
| 1991年12月 | 0.347 | 0.571 | 0.072 | 0.005 | 0.084 | 0.592 | 0.299 | 0.007 |
| 1992年3月 | 0.423 | 0.347 | 0.220 | 0.006 | 0.080 | 0.786 | 0.114 | 0.005 |
| 1992年4月 | 0.491 | 0.398 | 0.098 | 0.007 | 0.086 | 0.703 | 0.140 | 0.019 |
| 1992年10月 | 0.344 | 0.600 | 0.066 | 0.006 | 0.175 | 0.652 | 0.187 | 0.002 |
| 1992年11月 | 0.575 | 0.404 | 0.011 | 0.006 | 0.251 | 0.567 | 0.157 | 0.006 |
| 1992年12月 | 0.772 | 0.204 | 0.015 | 0.006 | 0.349 | 0.559 | 0.074 | 0.005 |
| 1993年3月 | 0.722 | 0.185 | 0.068 | 0.014 | 0.390 | 0.544 | 0.010 | 0.015 |
| 1993年4月 | 0.813 | 0.138 | 0.041 | 0.005 | 0.488 | 0.482 | 0.000 | 0.008 |
| 1993年10月 | 0.131 | 0.795 | 0.064 | 0.005 | 0.031 | 0.734 | 0.215 | 0.005 |
| 1993年11月 | 0.346 | 0.713 | 0.038 | 0.002 | 0.075 | 0.669 | 0.224 | 0.008 |
| 1993年12月 | 0.478 | 0.474 | 0.038 | 0.005 | 0.145 | 0.554 | 0.275 | 0.007 |
| 1994年3月 | 0.420 | 0.412 | 0.156 | 0.007 | 0.100 | 0.838 | 0.000 | 0.016 |
| 1994年4月 | 0.324 | 0.516 | 0.150 | 0.006 | 0.037 | 0.847 | 0.086 | 0.008 |
| 1994年10月 | 0.062 | 0.794 | 0.124 | 0.012 | 0.024 | 0.649 | 0.303 | 0.006 |
| 1994年11月 | 0.130 | 0.723 | 0.136 | 0.006 | 0.077 | 0.463 | 0.448 | 0.003 |
| 1994年12月 | 0.221 | 0.712 | 0.049 | 0.010 | 0.064 | 0.639 | 0.272 | 0.007 |
| 1995年3月 | 0.348 | 0.373 | 0.244 | 0.020 | 0.103 | 0.863 | 0.000 | 0.009 |
| 1995年4月 | 0.325 | 0.462 | 0.186 | 0.015 | 0.124 | 0.852 | 0.000 | 0.006 |
| 一24一 |
1992年－1993年漁期では他の年より雌雄ともに甲長が大きく、逆に1993年－1994年漁期には雌雄とも小さい傾向がみられた。パラメータを年度の年で共通とし、成長の年変動を考慮しないモデルで解析したAICの値は、雌では5856.14，雄では6159.32であり、成長のパラメータを年変動のないモデルで解析した結果（雌のAIC=7902.36，雄のAIC=5846.71）に比較して妥当性が著しく低下した（表2－1）。

各性群の平均甲長の推定値は、雄では1尾43.2mm～46.7mm（45.0mm），2尾60.8mm～64.0mm（62.4mm），3尾72.4mm～75.6mm（74.1mm），雌では1尾38.9mm～44.9mm（42.3mm），2尾54.0mm～57.8mm（56.2mm），3尾63.3mm～66.0mm（64.7mm）（いずれも三重県で漁期が始まる10月1日時点での値，カッコ内は年間の平均値）であった（図2－3）。推定された成長を，三重県（1992）*10の求めた甲長（CL, mm）－体重（BW, g）の関係式

\[BW = 0.001005 \times CL^{1.906} \quad \text{(雄)} \]

\[BW = 0.001525 \times CL^{1.800} \quad \text{(雌)} \]

を用いて体重に換算して表示すると，雄では1尾が69.7 g～87.8g（78.7g），2尾が192g～223g（207g），3尾が322g～365g（344g），雌では1尾が55.1g～83.1g（70.1g），2尾が141g～172g（158g），3尾が223g～251g（237g）（いずれも10月1日時点での値，カッコ内は5年間の平均値）となる。

2.4.4 密度従属成長

年によって成長に差異が生じる原因について，密度従属的な成長変動の可能性を検討した。図2－4には，横軸に漁場における資源密度の指標としての10月における平均CPUE（一般漁場におけるkg単位の総漁獲量／延べ出漁漁数）の値を，縦軸に各年の成長の速さを示す尺度としての10月における1尾群と2尾群の推定平均甲長をとり，雌雄別に5年分の各点をプロットした。なお，横軸に漁獲量ではなく漁獲尾数から計算したCPUEを採用することも考えられるが，個体の大きさによって密度従属過程に及ぼす影響が異なることも考えられるため，ここではすべての鰹群において資源密度の指標をとり，いわば体重で重み付けた密度指数としての「漁獲重量によるCPUE」を採用した。

いずれの場合も10月のCPUEが低い年には体長が小さい傾向がみられ，資源密度の高い年ほど成長が劣ることが示唆された。1群群と2群群の雌雄の各群における回帰直線の傾きがすべて0であるという帰無仮説（密度従属的な成長）を検定すると，このような観測値が得られる確率Pの値は0.027となり，危険率5％の水準で仮説

<table>
<thead>
<tr>
<th>年期</th>
<th>Bertalanffyの成長式</th>
<th>季節的成長</th>
<th>標準偏差式</th>
<th>全減少係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990年－1991年</td>
<td>-0.480</td>
<td>-0.199</td>
<td>-0.403</td>
<td>-0.153</td>
</tr>
<tr>
<td>1991年－1992年</td>
<td>0.390</td>
<td>-0.241</td>
<td>0.727</td>
<td>0.001</td>
</tr>
<tr>
<td>1992年－1993年</td>
<td>0.395</td>
<td>-0.118</td>
<td>0.367</td>
<td>-0.235</td>
</tr>
<tr>
<td>1993年－1994年</td>
<td>0.488</td>
<td>-0.653</td>
<td>0.482</td>
<td>-0.447</td>
</tr>
<tr>
<td>1994年－1995年</td>
<td>0.527</td>
<td>-0.321</td>
<td>0.548</td>
<td>0.146</td>
</tr>
<tr>
<td>1992年－1993年</td>
<td>0.481</td>
<td>-0.167</td>
<td>0.454</td>
<td>-0.647</td>
</tr>
</tbody>
</table>

*1: 2: 3: /年

は棄却された（第1自由度が4，第2自由度が12の分散分析）。したがって，10月における平均CPUEと各群の推定平均甲長の間には有意な負の関係が認められ，イセエビには密度徴屬的な成長変動が存在すると考えられた。

図2-4. 密度徴屬的な成長変動の検討 横軸に，漁場における資源密度の指標としての10月における平均CPUE（1船漁場における漁獲重量／延べ出漁労数）の値を，縦軸に各年の成長を示す尺度としての10月における1群群と2群群の推定平均甲長をとり，両者間の相関をプロッ
トした。回帰直線の傾きがすべて0であるという帰無仮説を検定したところ，危険率5%の水準で仮説は棄却された（第1自由度が4，第2自由度が12の分散分析；F=0.087)。

2.4.5 刺網の漁獲選択性
漁期内での1群群の加入の進行と加入状況の雌雄差，年による変動が生じる原因について明らかにするため，イセエビのサイズによる刺網漁具の漁獲選択性について検討した。

加入群の平均甲長と，漁獲物中での各群の出現率の関
係を図2-5に示した。漁獲物中での加入群の出現率は，各群の求められる他の群の出現状況をもとに左されるが，この値の変化をもとに，サイズに伴う加入の進行や漁獲選択性の変化に関しておおよその傾向を知ることができる。

図2-5によると，40mm前後の群はほとんど漁獲されないのに対して，45～50mmに成長すると急激に漁獲されるようになり，さらに60mmを越える群では加入ほぼ完了していると考えられた。雌に比べて成長の遅い
2.5 論 番

既往の文献によるイセウエビの成長の推定結果と本論文での解析結果を比較して図2-6に示した。なお，b)中村(1940)による成長は，稚魚漁業への比較の前小型群の成長に関して論議するために，Nakamura(1940)に報告された月別の生長成長データを，本稿で一括解析手法を用いて再解析したものである（山川1997b）。これからのうち，b)田中ら(1985)およびi)中田(1988)の推定値は他の報告例に比べて明らかに小さい。海域間でイセ

![Graph](image)

図2−5. サイズによる漁獲適切性に関与する検討結果，加入群の平均成長（地域別月別）と，漁獲数中での加入群の出

現率の関係を示した。1つの点が1ヶ月のデータに対当

する，比較の対象として，2群群についても1月のデータのみで分析に使用した。結果は，非線形最小自乗法によって求められたシグモイド型の曲線（ロジスティック曲線）を表す。

**13 三重県：平成4年度資源管理型漁業推進総合対策事業報告書（地域重要資源），鰤群渔季アナログ・漁集団イセウエビ，三重県，1993，53pp.
**14 三重県：平成8年度資源管理型漁業推進総合対策事業報告書（沿岸特定資源）, 資源海区イセウエビ，三重県，1997，22pp.
セツトの一括解析によって偏りを均一化する効果が期待される。

ウ）個別データの解析に比べて、群間の平均体長の差や各群の出現比に関してデータの多様性が高くなるため、推定精度の向上が期待される。田中（1954）は正規分布をする二群の混合した分布について、群間の平均の差、標準偏差の比、および各群の出現比を変えた場合に、biomde と称する条件をもつ出力条件を求めた。1 回のデータでは年齢群の分離が困難な場合でも、複数時点のデータではいずれかに biomde と称する条件やこれに等価な条件を満たす可能性が高くなる。松宮・田中（1974）は群間の平均の差と群別の出現比を数値に変化させた場合の二群の混合分布の変化を、サンマを事例に紹介している。

エ）成長の時間変化を検出することができる。個別の解析では高度変化が一定には検出できない。

オ）推定に用いる仮定の相互比較、検討や妥当なモデルの選択などを一貫性を保ちながら見事に良く行うことができる。個別の解析では最適な年齢群数や妥当なモデルがデータセットごとに異なる場合も生じ得る。

成長が変動する場合の一括解析において、本章ではデータセットごとにパラメータの共有／非共有を設定した。

成長の変動要因が年齢群で、すべての特性に対して同様の影響を及ぼすような場合はこの方法で比較的適正に変動を現出することがある。一方、年齢群に固有の要因によって成長が変動する場合には、データセットごとでは各年齢群ごとにパラメータの設定を行う必要がある。その場合は年ごとにパラメータを設定する場合よりもも推定するパラメータ数が多くなるため計算が多少煩雑になるが、若齢時の成長が後々の体長の大小に大きく影響する場合などには有効であろう。

体長組成解析の問題点として、一般にモードの不明瞭な高齢帯に関して、推定精度の低いことが挙げられている。前述の biomde と称する条件やこれに等価の条件（田中 1954 松宮・田中 1974）が満たされない場合は、体長組成データだけからの高齢帯の分離は困難である。極端体長 Lω と成長係数 K、欠時係数 Δ、標準偏差 σi、i = 1、年齢群数 n に相互補完的な関係があることが知られており、精度の高い推定を一層困難にする。例えば、Lω と K の間に一方の値を高くすれば他方が低くなるという関係がみられ、同様に σi と年齢群数 n に相互補完的な関係がみられる。

山川（1997b）は体長組成解析法と年齢形質法を結合させた推定の概念図を示した。年齢形質の利用できる種
イセエビの成長評価と漁業管理

では、成長に関する情報を年齢形態で補足しながら解析を進め、信頼性の高い結果を得ることが可能である。例えば、権限体長L_mは年齢形態での推定値に固定して解析したり、年齢組成解析の尤度に年齢形態による尤度を同時に組み込んで定数とする（Martin and Cook 1990、北門・山田 1997）ことなどが考えられる。標識放流で得られた情報の組み込み（北門・山田 1997）も有用であろう。しかし、イセエビでは有効な年齢形態が発見されていないので、高齢期に関しても成長の推定精度を高めるためには、漁獲圧力が低く、高齢期が漁場内に多く残存しているような地区でのデータを収集して解析することなどが有効であろう。ここで推定されたL_mの値は現時点での参考値であり、将来、更に検討を加えることによって、より妥当な値を求める必要がある。

第3章 拡張DeLury法による資源評価

3.1 はじめに

漁獲量努力量データの解析は、資源評価に幅広く利用されてきた。なかでも、最も簡便に利用できるものがDeLury法（DeLury 1947）あるいはLeslie法（Leslie and Davis 1939）として知られる線形回帰モデルである。Moran（1951）およびZippin（1956）は除去法による推定推定を展開した。数学の厳密性を備えた除去法は、サンプリング努力量が各期において一定の場合のモデルに相当する（Seber 1982）。これらのモデルでは単位努力あたり、あるいはサンプリングごとの採集（漁獲）効率は一定であるとしているが、現実の漁業では採集（漁獲）効率が一定という仮定は常に満たされるとは限らない。

利弊を考慮したイセリビのCPUEは、漁場内の資源密度に左右されるのみならず、いくつかの環境要因の変動によっても影響を受ける（久保1962、久保・石渡1964、Takagi et al. 1975、余座ら1977）。Takagi et al.（1975）は、冬にイセリビの漁獲量が最少になるのは、主として低水温においてイセリビの活動性の低下によると考えた。余座ら（1977）はイセリビの漁獲量は月の初期に強く影響されることが示し、これは月の増加とともに漁場の漁獲量が増加するためと解釈した。また多くのイセリビ漁業者は、海が荒れた状態のときには漁獲量が多くなることを認める。このような種や漁場に関する資源評価においては、環境の変化に起因するデータの変動のためには推定値が著しく偏っていたり、推定の精度が低いなどの問題が生じるためである。漁獲量努力量を一定とする従型モデルを改めて、環境要因によって漁獲量が変化するデータ仮定するのが自然であろう。

資源解析の統計モデルに用いる漁獲努力分布関数の選択も、パラメータの推定結果や精度を左右する重要な問題である（平松 1992）。現実のデータをもとに資源解析を行うにあたっては、用いる統計モデルの選択によって推定値の偏りや推定精度が大きく影響を受けることに留意する必要がある。

本章では、まず、DeLury法（除去法）の尤度に、水温や除海期モデル、波浪の強さなどの環境要因によって変化する漁獲量努力量データに適用し、q_iに関する最適なモデルをAIC（Akaike 1973, Matsumiya 1990a）によって選択した。次に尤度に、漁場分布関数の異なる各種の統計モデルを導入し、AICと推定パラメータの信頼区間の比較をもとに統計モデルの検討を行った。

3.2 モデルの構成

3.2.1 拡張DeLury法の基本モデル

N_iを初期資源尾数、C_iをi期における漁獲によって資源から除去された尾数（i=1, 2, ..., n）とするとき、(Ci)を与える確率分布を条件付き二項分布の枠として表すことができる：

\[L = \prod_{i=1}^{n} \left(\begin{array}{c} N_i \\ C_i \end{array} \right) p_i^{C_i} (1-p_i)^{N_i-C_i} \] (3.1)

\[N_i = N_0 - T_i, \quad T_i = \sum_{j=1}^{i} C_j \] (3.2)

ここで、N_i期における資源尾数、p_i期における（N_iに対する）除去率、

除去率 p_iは次式によって表す：

\[p_i = 1 - \exp(-q_i X_i) \] (3.3)

ここで、q_i: i期における漁獲量努力量

**: 高知県：大規模増殖場造成事業調査総合報告書
**: 昭和61年度版（中土佐地区）水産庁、1987、pp. 22-23.
**: 昭和62年度版（中土佐地区）水産庁、1988、pp. 22-23.
**: 昭和63年度版（中土佐地区）水産庁、1989、pp. 36.
**: 昭和64年度版（中土佐地区）水産庁、1990、pp. 26-27.
\[X_i; i \] 期における漁獲力

である。

3.2.2 渔獲率を表すモデル

渔獲率 \(q_i \) は環境要因などによって変化すると仮定する。ここでは、いくつかの補助的な環境要因を導入して、以下の14通りのモデルを定める。

I. \(q_i = a \)

II. \(q_i = a + bi \)

III. \(q_i = a + bi + di^2 \)

IV. \(q_i = (a+bi+di^2) \times [1+u \cos\left\{2\pi(i-v)/M\right\}] \)

V. \(q_i = (a+bi+di^2) \times [1+u \cos\left\{2\pi(i-v)/M\right\}] (w_i+z) \)

VI. \(q_i = a(t_i+f) \)

VII. \(q_i = a(t_i+f) \times [1+u \cos\left\{2\pi(i-v)/M\right\}] \)

IX. \[q_i = \begin{cases} a(t_i+f) [1+u \cos\left\{2\pi(i-v)/M\right\}] & (i \leq i_0) \\
(a(t_i+f) [1+u \cos\left\{2\pi(i-v)/M\right\}] & (i > i_0) \end{cases} \)

X. \[q_i = \begin{cases} a(t_i+f) [1+u \cos\left\{2\pi(i-v)/M\right\}] & (i \leq i_0) \\
(a(t_i+f) [1+u \cos\left\{2\pi(i-v)/M\right\}] (w_i+z) & (i > i_0) \end{cases} \)

XI. \[q_i = \begin{cases} a(t_i+f) [1+u \cos\left\{2\pi(i-v)/M\right\}] (w_i+z) & (i \leq i_0) \\
(a(t_i+f) [1+u \cos\left\{2\pi(i-v)/M\right\}] & (i > i_0) \end{cases} \)

ここで \(t_i; i \) 期における水温,

\[\bar{t}_i : \text{水温の5点移動平均値} \]

\[\left(\bar{t}_i = \frac{\sum_{j=-1}^{1} t_{j+i} / 5 \right) \]

\(i_0 \) : 水温の変化点（期）,

\(v_0 \) : 10月における初の新月の日,

\(M \) : 太陽月 (=29.53日),

\(w_i ; i \) 期における波浪強度の指標,

\(a, b, f, g, h, l, u, v, z \) : (推定すべき) パラメータ。

である。

\(q_i \) は、モデル I では一定、モデル II とモデル III ではそれぞれ、期間 \(i \) に関する線形関数と二次関数である。モデル IV と V はモデル III を拡張したケースで、モデル IV では太陽月 \(M \) を周期とする \(q_i \) の周期的変動を導入されている。\(u \) は周期の変動幅を決めるパラメータ、\(v \) は位相を決めるパラメータである。モデル V はモデル IV に加えて波浪の強さを考慮したもので、\(w_i \) の線形関数が導入されている。モデル VI では、\(q_i \) は水温 \(t_i \) の線形関数である。モデル VII と VIII はモデル VI を、太陽月周期と波浪を用いて拡張したケースである。モデル IX, X, XI では水温に関する異なる 2 つの線形関数が \(t_i \) の前後に別々に定められており、\(g \) はこれら 2 つの関数の傾きの比を表す。モデル XII, XIII, XIV は水温の移動平均 \(\bar{t}_i \) を導入することによって水温の長期変動と短期的変化を別々に扱うことができるようになったものである。ここで \(\bar{t} \) は、\(t \) と \(\bar{t} \) の差の影響度合を決めるパラメータである。

3.2.3 各種統計モデルの導入

ここでは \(C_{ij} \) に関する以下の 9 種の結合分布を導入し、拡張 DaLury 法における特性を吟味した。これらは、平松(1992) や Kitada et al.(1994) で検討されたモデルに、条件付き Poisson モデル(A)と対数正規
布モデル(H)，負の二項分布モデル(I)を加えたものである。

A. 条件付きPoissonモデル

\[
L = \prod_{i=1}^{n} \left\{ \frac{(N_i p_i)^{x_i} \exp(-N_i p_i)}{C_i^1} \right\}^{(1-p_i)^k} \quad (3.18)
\]

B. 条件付き二項分布モデル

\[
L = \prod_{i=1}^{n} \left\{ \frac{N_i!}{(N_i-C_i)!} C_i^1 \right\}^{(1-p_i)^k} \quad (3.19)
\]

C. Bの正規近似

\[
L = \frac{1}{(2\pi N)^{1/2}} \left(\prod_{i=1}^{n} P_i \right)^{-1/2}
\times \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \frac{(C_i-N_i p_i)^2}{N_i p_i} \right\} \quad (3.20)
\]

D. 多項分布の正規近似

\[
L = \frac{1}{(2\pi N)^{1/2}} \left(\prod_{i=1}^{n} P_i \right)^{-1/2}
\times \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \frac{(C_i-N_i p_i)^2}{N_i p_i} \right\} \quad (3.21)
\]

E. Cのover-dispersionモデル

\[
L = \frac{1}{(2\pi N)^{1/2}} \left(\prod_{i=1}^{n} P_i \right)^{-1/2}
\times \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \frac{(C_i-N_i p_i)^2}{N_i p_i} \right\} \quad (3.22)
\]

F. Dのover-dispersionモデル

\[
L = \frac{1}{(2\pi N)^{1/2}} \left(\prod_{i=1}^{n} P_i \right)^{-1/2}
\times \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \frac{(C_i-N_i p_i)^2}{N_i p_i} \right\} \quad (3.23)
\]

G. 条件付き正規分布モデル

\[
L = \frac{1}{(2\pi \sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \frac{(C_i-N_i p_i)^2}{\sigma^2} \right\} \quad (3.24)
\]

H. 条件付き対数正規分布モデル

\[
L = \frac{1}{(2\pi \sigma^2)^{1/2}} \prod_{i=1}^{n} C_i
\times \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \left\{ \log C_i - \log(N_i p_i) + \frac{\sigma^2}{2} \right\} \right\} \quad (3.25)
\]

I. 条件付き負の二項分布モデル

\[
L = \prod_{i=1}^{n} \left\{ \frac{C_i+k-1}{C_i} \right\}^{l_i} \left(\frac{k}{k+N_i p_i} \right)^{1} \left(\frac{N_i p_i}{k+N_i p_i} \right)^{C_i} \quad (3.26)
\]

ここで，

\[C_{x+1} = n \text{ 期の終了時までに除去されなかった尾数，}
\]
\[C_{x+1} = N_x - T_x \] ,

\[P_i = N_x \text{ に対する (i 期における) 除去率，}
\]
\[P_i = \left(1- \exp(-q_i X_i) \right) \text{exp} \left(-\sum_{i=1}^{n} q_i X_i \right) \]

\[P_{x+1} = n \text{ 期の終了時までの残存率 (非除去率)，}
\]
\[P_{x+1} = 1 - \sum_{i=1}^{n} P_i \] ,

\[\sigma^2 \text{ : (推定すべき) dispersion parameter，}
\]
\[\omega^2 \text{ : (推定すべき) 正規分布の分散，}
\]
\[\omega^2 \text{ : (推定すべき) 対数正規分布のパラメータ，}
\]
\[k \text{ : (推定すべき) 負の二項分布の "集中度"}
\]

(Waters 1959) を表すパラメータ,

\[
\frac{(C_i+k-1)}{C_i} = (-1)^5 \frac{(-k)(-k-1)\cdots(-k-C_i+1)}{C_i!}
\]

である。

3.2.4 パラメータの推定と妥当なモデルの選択，

信頼区間の解析

パラメータの推定は，q_i を表すモデル I 〜 IX を(3.3)式に代入した後，各統計モデルの尤度(A〜I)の対数を最大化することによって行った。最適化は非ニュートン法（矢木・福島 1991）で行った。

提示された一連のモデルからの妥当なモデルの選択にはAICを使用した。

\[\text{AIC} = -2 \log(\text{最大尤度}) + 2 m \] ,

(3.27)

ここで m は推定すべきパラメータの数である。
パラメータの信頼区間は尤度比検定により求めた。

\[\theta = (\theta_1, \ldots, \theta_m) \] : パラメータベクトル、

\[\hat{\theta} = (\hat{\theta}_1, \ldots, \hat{\theta}_m) \] : 尤度推定値、

\[\theta_i = (\hat{\theta}_1, \ldots, \hat{\theta}_i, \hat{\theta}_{i+1}, \ldots, \hat{\theta}_m) \] : ある \(\theta_i \) の値について、尤度推定値を最大にするパラメータベクトル。

とする。

あるパラメータ \(\theta_i \) に関する信頼区間は次のように与えられる。

\[
2 \log \left(\frac{L(\hat{\theta})}{L(\theta_i)} \right) \leq \chi^2(1, 0.95)
\]

ここで \(\chi^2(1, 0.95) \) は自由度 1 の 95% チーク値である。

3.3 適用データ

三重県和具における1990年10月－1991年4月漁期のイセエビ漁業に関する漁獲量努力量データを解析した。使用したデータは、①日別の漁獲努力年（捕獲船隻数；図 3-1 a）、②日別のイセエビの漁獲漁獲尾数（図 3-1 b）にイセエビ漁獲尾数と漁獲努力年から計算されるCPUEを示した、③和具地先の30m水深での水温（図 3-1 c）、④当該シーズンにおける太陽月周期の情報（図 3-1 d；この期間の最初の新月の日は1990年10月19日である）、⑤日別の波浪指数（図 3-1 e）である。

漁獲尾数データには2鰓群（漁業資源への加入完了群）の推定尾数を使用した。完全加入群の尾数は、市場水揚げされた漁獲物の頭甲長比較推定によって推定した月別の雌雄別鰓数組成表から、日別の漁獲量を推定することによって求めた。

水深30mにおける水温（図 3-1 c）は、①和具地先における月ごとの平均30m水深、②波（図 1-3）における日別の表面水温を用いて推定した。

波浪指数は、日別の風波階級値（うねり階級値）の合計とした。各階級値は大島気象台情報事務所による波立ち（図 1-3）の日々の海面の観察によって、波浪のカテゴリーデータとして使われている。

期の単位は“日”とし、1990年10月1日を第1期(i=1)と定義した。モデル IX～XIIにおける水温の変化点 \(t_i \) は、水温が最低水準に低下した第13日目（2月10日）とした。

CPUE（図 3-1 b；1日1隻あたりの漁獲尾数）は10月に最高で、2月までは低下するが、3月、4月になると再度上昇する。比較的高いCPUEが、満月よりも新月前後で観察される。

図3－1．適用データの概要。

a) 和具における1990年10月から1991年4月までのイセエビ漁業の日別漁獲努力年（捕獲船隻数）、b) それぞれの日におけるCPUE(c) (1日1隻あたりの漁獲尾数) とその1週間平均平均(一)、c) 和具地先の水深30mにおける水温、d) 太陽月周期（満月月の月光強度に対する、各時刻での月光強度の理論的相対比（百分率）、*: 新月、**: 満月）、e) 日別の波浪指数。

3.4 漁獲能力を表すモデルの検討

漁獲能力 \(q_i \) を表すモデル（Ⅰ～Ⅻ）の検討には、平松（1992）におけるDeLury法の検討にしたがって、over-dispersionを考慮した条件付き二項分布の正規近似モデル（モデルE）を統計モデルとして
て用いた。

解析結果の概要を表3-1および図3-2, 3-3に示す。

AICの値は、漁具別の一定とするモデル（I）よりも、漁具別の変数すると仮定したモデルで大幅に向上した。AICの値で判断すると、q_iの数値に関する最も妥当なモデルはモデルIIであった。表3-1のパラメータ推定値によると、パラメータa, gは正の値で、

| v | < Mであることから、q_iは ①水温が高く、②月相が新月前後で、③波浪が高い、条件を満たすときに高くなると考えられた。q_iと水温の関係を、水温下降期と上昇期で個々の機能として扱えば（モデルⅢ～Ⅻ）AICの値は向上し、さらに水温の日間移動を導入すれば（モデルⅲ～Ⅳ）、一層向上した。図3-2に、提示されたいくつかのモデルについて、q_iの推定値の適切性における推移を示した。最も妥当と選択されたモデルIIではq_iの値は大きく変化している。

N_iの信頼区間（図3-3）はモデルによって大きく異なっていた。信頼区間の幅は必ずしもモデルに沿って選定したパラメータ数には依存せず、むしろ、N_iの推定値と総漁獲尾数 T_i（3.2式）の変動率では T_i = 42,050）の差との関連性が高いようにもみえる。N_iが T_iに近い値として推定される場合（すなわち漁獲率が高いとされる場合）は信頼区間は比較的狭くなり、逆にN_iが T_iから離れた値として推定される場合（すなわち漁獲率が低いとされる場合）は信頼区間は広くなる。この点については、さらに詳細な検討を行う必要がある。

3.5 統計モデルの比較検討

前節で最も妥当であると判断されたモデルⅡを漁具別の漁獲率 q_iのモデルとして採用し、統計モデル（A～I）の比較検討を行った。

表3-2に、モデルごとのパラメータ推定値とその信頼区間を示した。

AICの値は負の二項分布モデル（I）で最小で、他のモデルと大きな差異があった。したがって、負の二項分布モデルが最も妥当な統計モデルと判断された。

モデルA～DのAICの値は他のモデルより著しく大きかった。このことは、分散が平均値には等しい確率分布によるモデルは不適切で、実際の分散は単純ランダムサンプリングに基づくモデルで示されているよりも相対的に小さいことが認められた。モデルEとFのdispersion parameter σ^2 の推定値（=29.1）もover-dispersionの存在を示している。なお、モデルE, FのAICの値はモデルH, Iより劣っていた。これは、平均のまわりに対称な確率分布によるモデルはイセハエのデータには妥当ではなく、実際の分布は対数正規分布や負の二項分布のように平均値のまわりに非対称であることを示唆する。

単年データと3ヶ月データの各モデルについて、初期値

| Model | N_i | a | b | d | f | g | h | l | u | v | z | σ^2 | AIC |
|-------|-----|---|---|---|---|---|---|---|---|---|---|---|-----|-----|
| I | 47858 | 817 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| II | 50402 | 79.6 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| III | 52244 | 131.0 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| IV | 57730 | 102.8 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| V | 61682 | 19.0 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| VI | 75686 | 4.75 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| VII | 87320 | 3.57 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| VIII | 89663 | 0.815 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| IX | 51443 | 10.5 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| X | 53863 | 9.23 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| XI | 55665 | 1.57 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| XII | 57894 | 9.48 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| XIII | 58136 | 7.89 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |
| XIV | 56727 | 1.35 | -0.145 | 110.1 | -0.239 | 0.966 | -0.273 | 19.4 | 0.812 | 41.0 | 1850.6 |

*: モデルが最も妥当性が高い。
図3－2. 漁具能率 q_f を表すモデルが異なる場合の、モデルごとの推定漁具能率の推移。モデルI、II、III、IV、VI、XI、XIIでの推定結果を例示した。

図3－3. 漁具能率 q_f を表すモデルが異なる場合の、各モデルによって推定された初期資源尾数 N_0 の値と95%信頼区間。各モデルの詳細については本文を参照のこと。

** : モデルGでは N_0 の推定値が現実の最終漁獲尾数 N (=42,050) と等しい値に収束したため、信頼区間を求めることができない。

図3－5. 解析は、主に年別漁獲尾数を対象としたものを目的関数として行った。ここで、パラメータ a_f と g は漁獲尾数を含む比率であり、一方、初期資源尾数 N_0 は年毎に特有であると仮定した。
表3-2：拡張DeLury法の各統計モデルによって推定されたパラメータの値と95%信頼区間（カッコ内）: 1990年10月から1991年4月の和気におけるイセビジ刺繍魚ダーティを適用した。発束率q_iを表すモデルにはモデル3を用いた。

各統計モデルの詳細については本文を参考に。

<table>
<thead>
<tr>
<th>Model</th>
<th>N_0</th>
<th>a (base)</th>
<th>f</th>
<th>g</th>
<th>k</th>
<th>v</th>
<th>r</th>
<th>σ^2</th>
<th>k</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>63,344</td>
<td>1.19</td>
<td>-15.3</td>
<td>1.05</td>
<td>-41.3</td>
<td>1.26</td>
<td>0.212</td>
<td>0.290</td>
<td>1.13</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(61,416-6644)</td>
<td>—</td>
<td>(13.2-13.1)</td>
<td>(23.1-37.2)</td>
<td>(44.7-84.1)</td>
<td>(1.24-1.30)</td>
<td>(0.194-0.318)</td>
<td>(0.089-0.670)</td>
<td>(0.87-1.15)</td>
<td>5470.4</td>
</tr>
<tr>
<td>B</td>
<td>63,358</td>
<td>1.16</td>
<td>-15.3</td>
<td>2.65</td>
<td>-40.3</td>
<td>1.27</td>
<td>0.216</td>
<td>0.271</td>
<td>1.11</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(61,409-6052)</td>
<td>—</td>
<td>(13.5-13.1)</td>
<td>(23.6-37.2)</td>
<td>(44.7-84.1)</td>
<td>(1.24-1.30)</td>
<td>(0.194-0.318)</td>
<td>(0.089-0.670)</td>
<td>(0.86-1.37)</td>
<td>5331.7</td>
</tr>
<tr>
<td>C</td>
<td>63,473</td>
<td>1.21</td>
<td>-15.2</td>
<td>3.34</td>
<td>-43.7</td>
<td>1.23</td>
<td>0.188</td>
<td>0.111</td>
<td>1.24</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(61,473-6473)</td>
<td>—</td>
<td>(13.4-13.0)</td>
<td>(23.3-47.4)</td>
<td>(47.7-87.2)</td>
<td>(1.24-1.17)</td>
<td>(0.175-0.205)</td>
<td>(0.09-0.52)</td>
<td>(0.99-1.31)</td>
<td>5504.5</td>
</tr>
<tr>
<td>D</td>
<td>63,732</td>
<td>1.11</td>
<td>-12.1</td>
<td>3.24</td>
<td>-44.1</td>
<td>1.24</td>
<td>0.192</td>
<td>0.112</td>
<td>1.22</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(61,394-6677)</td>
<td>—</td>
<td>(13.4-13.1)</td>
<td>(23.5-47.4)</td>
<td>(47.7-87.2)</td>
<td>(1.24-1.17)</td>
<td>(0.175-0.205)</td>
<td>(0.09-0.52)</td>
<td>(0.99-1.31)</td>
<td>5604.5</td>
</tr>
<tr>
<td>E</td>
<td>61,727</td>
<td>1.35</td>
<td>-13.8</td>
<td>3.34</td>
<td>-46.1</td>
<td>1.22</td>
<td>0.263</td>
<td>0.211</td>
<td>1.07</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>(51,092-7138)</td>
<td>—</td>
<td>(14.3-13.0)</td>
<td>(23.5-47.4)</td>
<td>(46.2-81.7)</td>
<td>(1.24-1.17)</td>
<td>(0.114-0.298)</td>
<td>(0.041-0.282)</td>
<td>(0.23-0.372)</td>
<td>1766.5</td>
</tr>
<tr>
<td>F</td>
<td>61,710</td>
<td>1.37</td>
<td>-13.3</td>
<td>1.30</td>
<td>-45.5</td>
<td>1.22</td>
<td>0.260</td>
<td>0.200</td>
<td>1.06</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>(53,146-75,560)</td>
<td>—</td>
<td>(14.3-13.0)</td>
<td>(23.4-46.6)</td>
<td>(46.1-84.4)</td>
<td>(1.24-1.17)</td>
<td>(0.138-0.294)</td>
<td>(0.024-0.194)</td>
<td>(0.247-0.286)</td>
<td>1862.9</td>
</tr>
<tr>
<td>G</td>
<td>67,915</td>
<td>1.31</td>
<td>-13.7</td>
<td>3.06</td>
<td>-42.0</td>
<td>1.18</td>
<td>0.205</td>
<td>0.227</td>
<td>1.01</td>
<td>17357</td>
</tr>
<tr>
<td></td>
<td>(52,946-112,231)</td>
<td>—</td>
<td>(14.4-14.0)</td>
<td>(1.71-1.49)</td>
<td>(0.75-2.26)</td>
<td>(0.18-1.31)</td>
<td>(0.205-0.412)</td>
<td>(0.225-0.715)</td>
<td>(0.21-2.38)</td>
<td>2066.1</td>
</tr>
<tr>
<td>H</td>
<td>70,118</td>
<td>1.14</td>
<td>-12.8</td>
<td>1.91</td>
<td>-24.8</td>
<td>1.21</td>
<td>0.239</td>
<td>0.133</td>
<td>0.19</td>
<td>0.242*</td>
</tr>
<tr>
<td></td>
<td>(54,957-112,699)</td>
<td>—</td>
<td>(13.3-13.5)</td>
<td>(1.98-1.32)</td>
<td>(0.94-1.12)</td>
<td>(0.28-1.74)</td>
<td>(0.127-0.287)</td>
<td>(0.172-0.755)</td>
<td>(0.21-2.38)</td>
<td>1751.6</td>
</tr>
<tr>
<td>I</td>
<td>64,917</td>
<td>1.11</td>
<td>-12.4</td>
<td>3.75</td>
<td>-36.5</td>
<td>1.22</td>
<td>0.183</td>
<td>0.162</td>
<td>0.42</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(53,708-95,352)</td>
<td>—</td>
<td>(13.4-14.0)</td>
<td>(1.66-1.34)</td>
<td>(0.99-2.39)</td>
<td>(0.88-1.09)</td>
<td>(0.183-0.280)</td>
<td>(0.19-0.35)</td>
<td>(0.41-2.53)</td>
<td>1723.1***</td>
</tr>
</tbody>
</table>

*: σ^2 **: σ^2 ***: モデル1で最も妥当性が高い。

3ヶ年データについてのN_0の信頼区間（図3-46）は、負の二項分布（I）においても、単年データでの区間に比較して著しく狭くなった。(3ヶ年データにおけるモデル1でのパラメータN_0の推定値：53,419, 信頼区間：49,864-58,593)**21 このように複数のデータを統合すれば、推定精度の向上にとって有効といえる。

3.6 開 読

本章の主たる内容については、既にYamakawa et al. (1994a, 1994b)に発表した。

Miller and Mohn (1993) is Leslie法に必要な仮定が

注*21 3ヶ年データのサンプル数が単年データの約3倍であることを考慮すれば、パラメータの推定精度はおおよそ1/3値程度に向上することが予想される。しかし、N_0の信頼区間の実際の向上度合いはこの値よりも著しく大きかった。別途行った、より詳細な解析の結果から判断すると、精度の向上度合いは対象とするパラメータやデータセットによって相当異なり、この現象については別の機会に詳述したい。
イセエビの資源評価と漁業管理

満足されないときに推定結果がどのように影響を受けるかを数値実験によって検討し、漁獲能率が一定でなく漁期の途中で増加する場合や漁獲努力が漁場内で均一に分布しない場合などには推定の偏りが大きくなることを明らかにした。本章のモデルは補助的な情報である環境データを導入することによって、漁具能率の変化がある場合にもそれを反映した“自然な”推定を行うことができると。とくに漁期においては漁獲を増やす要因（太陽月周期や波浪の大きさなど）によって推定精度が大きく影響を受ける場合には有効であろう。ただし、漁期中を通じて単調増加または単調減少する要因に関しては漁獲（除去）による資源密度の低下傾向との推定偏差が困難であることが予想されるため、この点については十分配慮する必要がある。

本章では、漁獲の変動を表す統計モデルの相違によって、拡張DeLury法の推定結果がどのように影響を受けかかるかを示すことができた。モデルの違いは推定値そのもののにも若干の差異を与えるが、より本質的には精度の推定結果に大きく影響を与えることとなった。これは信頼性の高い資源管理の実施にとっては重要である。

統計モデルの妥当性の判定結果には、分散が大きな影響を与えることが判明した。dispersion parameter \(\sigma^2 \) の導入によるAICの改善はこれまで数例が報告されている（北田 1991, 平松 1992, Kitada et al. 1994）。Kitada et al. (1994)はdispersionが大きくなる原因として対象種の集団行動に言及し、また北田（1991）は、「漁業によるサンプリングを前提とする水産資源の解析の場合、魚のパッチ状分布という生態的特性と効率よく（まとめて）漁獲するという漁具の特性に起因して、多分散分布の仮定、即ち単純ランダムサンプリングの仮定は成立しない場合が多いと考えられる」と述べた。

負の二項分布は、集団を示す生物の分布を記述するのにしばしば使用される（Taylor 1953, Moyle and Lound 1960, Lambou 1963, Roessler 1965, Clark 1974, Lenaz and Adams 1980, Welch and Ishida 1993）。平均を \(\mu (= N, \rho) \) とすれば、負の二項分布の分散は Poisson分布の分散 \(\mu \) よりも \(\mu / k \) だけ大きい。対象生物の集団の程度が高くなるに従って、集中度を表す尺度 \(k \) は 0 に近づき、閉度ゼロの階級を無視すれば分布は Fisher の対数級数則（Fisher et al. 1943）に近づく。逆に集団の程度が高くなれば \(k \) は無限大に近づき、分布は Poisson 分布に収束する。\(k \) の推定値が5.98であること（表 3 - 2）は、イセエビは漁場内でランダムには分布せず、何らかの集団性を有することを示唆している。実際、イセエビは定着性の強い種で、分布は岩礁帯のみに限られている。そして、適当な開口部や空間を有する岩穴、岩の亀裂、間隙などに好んで棲息する（大島 1935, 野中 1966）。複数の個体が 1 つの亀裂に寄っていることもよく観察される。本章での結果は、漁具の特性、対象種の行動パターン、制限を仕掛ける場所の選択における漁業者の行動など、漁業活動における様々な特徴をともに、イセエビのこのような分布生態をよく反映しているとみなすことができる。
第4章 複数年齢群解析による資源評価

4.1 はじめに

コホート解析（シングルコホート解析、マルチコホート解析、VPA）は年齢別漁獲尾数から資源尾数を推定する代表的な方法で、Jones (1961), Murphy (1965), Gulland (1965), Pope (1972) などに初期の展開がみられる。

平松 (1990, 1992) は実際の立場からコホート解析、構築再推定、Delury 法がひとつの基本漁獲方程式で統一的に扱えることを示し、それぞれの手法の差異は、単に利用可能な情報と未知パラメータの組み合わせの違いに対応するにすぎないとした。

ここでは、第3章で導出した拡張 Delury モデルを、複数の年齢群を同時に扱う "コホートモデル" として展開する。このモデルは、いわば従来の "separable VPA" に漁獲努力と漁獲効率、サイズによる漁獲選択性を導入して separability の一義化を図り、パラメータの推定を尤適法で行うようにしたもので、平松 (1990, 1992) の論文にある「基本漁獲方程式による統一的扱い」を具体化したモデルに相当する。解析の単位期間には、通常のコホートモデルでの単位期間である「年」よりも短い期間（ここでは「日」）を使用し、漁獲過程が漁期内で不均一の場合にも対応可能なモデルとした。イセエビ刺網漁業の5ケ年の漁獲量努力量データに適用して年齢別の初期資源尾数、加入群の性比、漁具能率 (環境によって変化)、漁獲選択性曲線、自然死滅係数の同時推定を行った。***

4.2 解析モデルの構成

解析モデルの概念図を模式的に図4-1に示した。

図4-1。複数年齢群解析における解析モデルの概念図。漁獲対象資源は生後、固有の成長曲線に従って成長する。多年魚では、平均体長の異なる複数の年齢群が任意の時点において漁獲内に混在する。漁具の網目選択性に起因する対象群の体長を反映した漁獲選択性を考える。各時点でのそれぞれの群の漁獲尾数は漁獲努力、漁具能率（環境によって変化）、漁獲選択性率（相対的漁獲効率）によって決まるとする。詳細については本文を参照のこと。

*** 山川 卓・松宮義晴：Separabilityに関する情報を活用した複数年齢群解析。平成7年度日本水産学会秋季大会講演要旨集，1995, p. 22.
漁獲対象資源は生後、固有の成長曲線に従って成長する。ここでは、Bertalanffy式に季節の成長を導入した成長式（第2章）を想定する。多様種類では、平均体長の異なる魚種の年齢層（コント）が任意の時点において漁獲対象資源を増加する。漁具の網目選択性に起因して、対象種の体長を反映した漁獲選択性曲線を考えることができ、漁期の進行に伴い、それぞれの魚種は各時点での漁獲効率、漁獲能率、漁獲高効率（相対的漁獲効率）を反映した漁獲と、自然死亡によって減耗する。

漁獲能率は季節によって変化し、環境条件などを補助変数とするいくつかの漁獲パターンを伴った式に従い推移する（第3章）と仮定する。漁獲選択性曲線はシグモイド型曲線を考える。

i年目i日目におけるj魚群の資源尾数をNiij，漁獲（除去）尾数をCiij（雄：i = 0，雌：i = 1）するととき，（Ciij）を与える結合分布を，前報で最も妥当性が高いと判断された母方二項分布（モデルI）として表現することができる

\[L = \prod_{i=1}^{k} \prod_{j=1}^{f_{\text{max}}} \left(\frac{C_{ij} + k - 1}{C_{ij}} \right) \left(\frac{k}{k + N_{ij} \cdot p_{ij}} \right) \]

ここで，

\[p_{ij} = \begin{cases} 1, & \text{雄} = 0, \text{雌} = 1, \\ 0, & \text{他} \end{cases} \]

である。

\[D_{ij} = \rho(L_{ij})q_{ij}X_{ij} \]

ここで，\(\rho(L_{ij}) \)：平均体長Lの群に対する漁獲選択性率（相対的漁獲効率），

\[\rho(L_{ij}) = \frac{1}{1 + \exp \left(a - \beta L_{ij} \right)} \]

α，β：パラメータ

（この場合，50％効率体長**23 は1/β，50％効率体長**23 付近における曲線の傾きはα/β とされる）。

\[L_{ij} = i \text{年目} i \text{日目におけるj魚群の平均体長} \]

（雌：i = 0，雄：i = 1）（所与）。

\[q_{ij} = i \text{年目} i \text{日目における漁獲能率}（第3章参照）。 \]

\[X_{ij} = i \text{年目} i \text{日目における漁獲効率}（所与）。 \]

\[M : \text{自然死亡係数}（/日）。 \]

である。

資源尾数Nは漁期の経過に伴い，次式に従って減耗するとき

\[N_{ij(i+1)0} = N_{ij(0)0} e^{\frac{2}{(L_{ij})^{2}} \cdot C_{ij}} \cdot \frac{M}{c_{ij}} \]

（4.5）

なお，各群の初期資源尾数の間には図4-2に示すような計算上の関係があると仮定して，以下の関係式を導入する。

\[N_{ij(i+1)0} = N_{ij(0)0} e^{\frac{2}{(L_{ij})^{2}} C_{ij}} \cdot \frac{M}{c_{ij}} \]

（4.5）

\[N_{ij(i+1)j} = N_{ij(0)j} e^{\frac{2}{(L_{ij})^{2}} C_{ij}} \cdot \frac{M}{c_{ij}} \]

（4.6）

\[N_{ij(i+1)j} = N_{ij(0)j} e^{\frac{2}{(L_{ij})^{2}} C_{ij}} \cdot \frac{M}{c_{ij}} \]

（4.7）

各年群1魚群の初期資源尾数と1魚群の性比，および1年目群1魚群2魚群上群の初期資源尾数が推定できる，（4.5）式，（4.6）式，（4.7）式により，すべての資源尾数を計算できる（図4-2）。

漁具能率qを表すモデルには，前報でAICの値が最も小さかったモデルIIを使用した。qを表すモデルのパラメータと魚種二項分布のパラメータk，自然死亡係数Mは年，群，雌雄によらず一定，1魚群の性比SRは年によって一定とした。

既知として与えられるデータは，漁獲尾数C_{ij}，漁獲効率X_{ij}，各群の平均体長L_{ij}，漁獲能率を表すモデルに使用される環境データ（水温，太陽月周期，波浪指数）であり，推定すべきパラメータは，漁獲開始時

**23 以下では50％選択体長と記す。
山川 卓

の各群の初期資源尾数 $N_{1/10}$ （ただし，（4.6）式または（4.7）式によって他から計算できるものを除く，1 齢群の性比 SR_1，漁具能力 q_It を表すモデルの各パラメータ（a，f，g，h，l，u，v，z），漁獲選択曲線のパラメータ（$\alpha，\beta$），負の二項分布のパラメータ k である。自然死亡係数 M については ① 未知として他のパラメータと同時に推定する場合（A），②既知として与える場合（$M=0.10/365, 0.15/365, 0.20/365, 0.25/365, 0.30/365$ の 5 段階；B～F）を設定した。

パラメータの推定は（4.1）式の対数（対数尤度）の最大化によって，未知のパラメータを－括して行った。非線形最適化には準ニュートン法を用いた。各パラメータ推定値の95％信頼区間は尤度比検定で計算した。方法の詳細については第 3 章と同様である。

図 4-2. 各群の初期資源尾数に関する計算上の関係（模式図）。各年の雄1歳群の初期資源尾数と1歳群の性比，および1年目の雄雌2歳以上の群の初期資源尾数（濃い太線で囲んだ部分）が推定できれば、すべての資源尾数が計算できる。
4.3 適用データ

三重県和具における1990年-1991年、1991年-1992年、1992年-1993年、1993年-1994年、1994年-1995年のいずれも10月-4月の漁期のイセエビ刺網漁業に関する漁獲量努力効果データ（5ヶ月分）を解析した。使用したデータは、a)目別の漁獲船数（図4-3a）、b)目別のイセエビの齢別雌雄別漁獲尾数（図4-3b）、c)和具地先の30m水深での水温（図4-3c）、d)各漁期における太陰月周期（図4-3d）、e)目別の波浪指数（図4-3e）、f)齢別雌雄別の成長（図4-3f）である。各年の齢別雌雄別の目別漁獲尾数（b)）は、第2章で推定した各年の齢別雌雄別の齢別組成（図2-2、図2-3）と、雌雄別の頭胸甲長-体重関係（三重県 1992*12; 2、4節）を用いて、目別の総漁獲量から換算して求めた。パラメータとして着底後3年以上を経過した群（3齢以上の高齢群）については推定漁獲尾数を合計し、3齢群としてまとめて解析した。齢別それぞれの目别-齢別の日々の体長L3/max(f)は第2章で推定した。年ごとに異なる成長式（表2-2、図2-1）から求めた。その他のデータの詳細については第3章と同様である。

なお、各漁期の漁獲尾数は全群の合計で6.5万尾~11.8万尾（平均9.1万尾）、後部漁獲船数は2,583隻・日～3,447隻・日（平均2,985隻・日）であった。

4.4 解析結果

解析結果の概要を表4-1および図4-4~4-7に示す。

すべてのパラメータを未知として推定した場合（A）はAICの値は最も低かったが、自然死亡係数Mが現実にはあり得ない値（M = 0）に収束した（表4-1）。パラメータの信頼区間の推定においてもNに関する制約条件（4.5式、4.6式、4.7式、すべてのN ≥ 0）を満足させ、かつ(3,28)式の等号を成立させる値が存在しないケースもみられ、自然死亡係数Mを未知のパラメータとして同時推定すると全体の推定結果が不安定化すると考えられた。

![イセエビの資源評価と漁業管理](image-url)

<table>
<thead>
<tr>
<th>自然死亡係数</th>
<th>初期資源尾数</th>
<th>推定初期計算結果</th>
<th>各年報告値</th>
<th>元年</th>
<th>2年目</th>
<th>3年目</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M \times 365)</td>
<td>(N_0)</td>
<td>(N_{e0})</td>
<td>(N_{e1})</td>
<td>(N_{e2})</td>
<td>(N_{e3})</td>
<td>(N_{e4})</td>
</tr>
<tr>
<td>A</td>
<td>0.00 **</td>
<td>(99.449)</td>
<td>(44,345-45,862)</td>
<td>(100,435-102,923)</td>
<td>(75,925-83,911)</td>
<td>(30,876-36,153)</td>
</tr>
<tr>
<td>B</td>
<td>0.10 **</td>
<td>(46,710)</td>
<td>(46,218)</td>
<td>(101,415)</td>
<td>(81,744)</td>
<td>(34,868)</td>
</tr>
<tr>
<td>C</td>
<td>0.15 **</td>
<td>(47,555)</td>
<td>(47,213)</td>
<td>(107,300)</td>
<td>(85,832)</td>
<td>(35,541)</td>
</tr>
<tr>
<td>D</td>
<td>0.20 **</td>
<td>(49,420)</td>
<td>(48,244)</td>
<td>(109,277)</td>
<td>(87,997)</td>
<td>(36,311)</td>
</tr>
<tr>
<td>E</td>
<td>0.25 **</td>
<td>(51,235)</td>
<td>(49,315)</td>
<td>(111,322)</td>
<td>(90,243)</td>
<td>(37,110)</td>
</tr>
<tr>
<td>F</td>
<td>0.30 **</td>
<td>(52,760)</td>
<td>(50,427)</td>
<td>(113,447)</td>
<td>(92,572)</td>
<td>(37,929)</td>
</tr>
</tbody>
</table>

*: 未知として同時推定。 **: 既知として推定。 ***: 無推定

表4-1. （続き）

自然死亡係数 \(M \) を既知として与えた場合（B-F）は、 \(M \) の値を大きくするほど各初期資源尾数の推定値が大きくなった（表4-1、図4-4）。しかし、漁具能率 \(q_A \)（図4-5）と漁獲選択曲線（図4-6）は \(M \) の値の変化に対して安定で、ほとんど変化がみられなかった。AICの値は \(M \) が小さいほど低くなる。

漁具能率 \(q_A \) は前章での結果と同様で、(1)水温が高く、(2)月相が新月前後、(3)漁獲が高い、条件を満たすときに高くなると考えられた。各年で推定された、漁具能率 \(q_A \) の推移状況（\(M = 0.2/365 \)の場合）を図4-3に示した。

初期資源尾数などの推定結果をもとに、\(M = 0.2/365 \)の場合について、各群別の漁獲、自然死亡、漁獲の繰り返し状況を図示した（図4-7）。1群目の初期資源尾数は年によって変動し、解析を行った5年間では1992年漁期と1993年漁期で多かった。1群目の漁獲率は雌では16.9-27.2%、雄では19.9-21.1%であり、年によって若干の変動がみられた。これは第2章で示したように、年による成長の変動が漁獲選択の差となって表れた結果であると推察される。2群目の漁獲率は雌では63.6-74.4%、雄では52.4-66.2%、3群以上の群の漁獲率は雌では66.7-79.1%、雄では64.2-76.8%であり、相当高い漁獲圧がこれらの群にかかっていることが判明した。

推定された漁獲選択曲線（図4-6）から、和具地区におけるイセエビの追加は長さ40mm前後から始まり。

---42---
50〜60mmの間で選択性が急激に高まるものと考えられた。この傾向は第2単で推定された傾向（図2-5）とはほぼ同様である。

1鰹群の性比は1.69〜1.74（雄の尾数/雌の尾数）であり、1：1から相当ずれていることが示唆された（表4-1）。

図4-4. 自然死亡係数Mの値を変化させた場合の初期資源尾数の推定値と95%信頼区間の変化。1年目の雄1鰹群での推定結果を例示した。他の魚についても同様な傾向が見られた。M=0についてはMを未知として他のパラメータと同時推定した場合（A）、M=0.10〜M=0.30についてはMを所与とした場合（B〜F）の結果である。

図4-5. 自然死亡係数Mの値の変化に伴う推定漁獲率の変化。1990年10月〜1991年4月漁期における推定結果のうち、Mを未知として他のパラメータと同時推定した場合（A；M=0.0）と、Mを所与とした場合のうちの3例（B、D、F；M=0.1、0.2、0.3）を示した。それぞれの漁期の漁獲率の推定結果については図4-3を参照のこと。

図4-6. 複数年齢群解析によって推定された漁獲選択曲線。自然死亡係数Mを未知として他のパラメータと同時推定した場合（A；M=0.0）と、Mを所与とした場合のうちの3例（B、D、F；M=0.1、0.2、0.3）を例示した。

図4-7. 複数年齢群解析によって推定された各年齢群の自然死亡、漁獲、翌年への残り数状況（M=0.2の場合）初期資源尾数のうち、自然死亡および漁獲によって失われなかった残りの尾数が翌年へ繰り越される。
4.5 論

漁獲係数を[環境条件などによって変化する漁獲能率]×[サイズによる選択率]×[漁獲効率]の積で表すことにより、刺網によるイセイエビの漁獲過程を忠実に反映した「自然差」推定を行うことができた。前章でも示したようにイセイエビ刺網漁業では水温や大陸間周期、波浪によって漁期内でも漁獲能率が変化する。成長も年によって異なるため、ある一定の漁獲選択曲線に従って漁獲が進行するとしても、現実の1齢群の漁獲加入状況や各齢群の選択性は年によって異なる。イセイエビ刺網漁業では毎年一定の「鮟鱇固有の係数」を仮定することには無理があり、従来のseparable VPAでは推定誤差が大きくなるため対応できないと考えられる。

日本産イセイエビの自然死亡係数の値を推定した例は文献にみられないが、外国産のイセイエビについてはいくつかの報告が存在する（Morgan 1980）。Munro は平均頭胸甲長のデータと成長パラメータを用いて Beverton and Holt (1956) の方法で Panulirus argus の年間の全減少係数と自然死亡係数を推定し、未利用資源では M = 0.52/年、中程度利用されている資源では M = 0.23/年、高利用されている資源では M = 0.14/年という値を算出した。Jasus edwardsii では M = 0.10/年、Panulirus cygnus では M = 0.226/年という値が推定されている（Morgan 1980）。本論文ではこれらの報告を参考に、日本産イセイエビについて M = 0.20/年（前後）の値を仮定し、以後の解析を行った（第 6 章）。仮定する自然死亡係数の誤差が VPA解析の推定結果に与える影響については詳細な検討がなされている（Ulltang 1977, Sims 1984）。今後は日本産イセイエビについても、より精度の高い自然死亡係数の推定値を得るために努力が必要である。

本章での漁獲選択曲線にはシグモイド型曲線を仮定した。一般的には第 2 章で論識したようなドーム型を基本とし、右に尾を引く関数形（例えば Methot 1990 の 2つのロジスティック関数の積など）を仮定することも可能である。ただし、曲線の右半分（高齢群）に関する推定精度を確保するためには、高齢群の魚獲尾数についても十分に精度の高いデータを使用する必要がある。本章で用いた魚獲出現率や成長に関するデータは第 2 章での解析結果であり、高齢群域での信頼性は高くない。このため、加入が始まると漁獲対象の主群となる体長付近での漁獲選択性の変化について検討することを主な目的に、シグモイド型曲線を仮定した。高齢群域
における選択曲線の形状については今後の検討課題である。なお、本章では漁獲選択曲線を未知としてパラメータ推定を行ったが、水槽実験や漁獲実験などを通じて選択曲線があらかじめ判明している場合はそれを既知として導入することで他の未知パラメータの推定に利用することができる。

本章の解析では雄および成長段階別のイセエビの行動には差がないものと仮定し、各群を統一的に扱って解析した。小型群と大型群で夜間や季節別の行動に差があり、漁獲状況に影響を及ぼしている場合などは、漁獲選択曲線や性比に関する推定値も異なってくるため、標識放流やフィールド調査などを通じてイセエビの分布・移動生態や雌雄・成長段階別の行動についても明らかにしておく必要がある。
第5章 漁獲努力の漁期内最適配分に基づく漁業管理

5.1 はじめに

所与の加入資源の有効利用を図ることは、漁業所得の向上に寄与するとともに、資源管理の推進において漁業の経済的な動機を補償するという点で重要な意味をもつ。加入資源の有効利用には、ある漁期内での漁獲量や漁獲努力の効果的な配分を図るという比較的短期的な視点からの管理（漁獲管理）と、加入あたり漁獲量や加入あたり漁獲金額の最大化を代表する、対象資源の生残を対象とした比較的長期的な視点からの管理の 2 通りが大別して考えられる。本章では主に前者、すなわち、漁期内での資源の有効利用を目的とした漁獲努力の最適配分について検討する。

一般に、漁獲物の価格は漁期の進行に伴い大きく変化する。第3章と第4章で示したように、同じ漁獲努力の投入によっても、期待される漁獲量は資源密度や漁具能率の変化などによって刻々と変化する。現在の漁業では、目的とする種以外の漁獲物が重要な収入源となってていることも多い。資源管理を行う主体は経済活動を営む漁家であるため、資源の有効利用を考える際には漁家所得をめぐる漁業構造も考慮に入れる必要がある。このような状況下で所与の加入資源の有効利用を図るためには、どの時期にどれだけの漁獲努力を配分して漁獲を行うかがとくに重要な課題といえるよう。

ここでは、最大化すべき目的関数を期間内の漁家の所得に関する総現在価値 (Clark 1985, Hannesson 1993) とした。漁具能率および価格、漁獲物数漁業による期待収入が漁区内で変化するとき、それらを用いて目的関数を表した。ポントリヤギンの最大原理 (Pontryagin et al. 1962) を用いて最大化のための漁獲努力の最適配分を導出し、イセエビ制漁業に適用して数値解析による検討を行った。**

5.2 解析モデル

5.2.1 目的関数

対象種の初期資源尾数 \(N_0 \) を既知、漁期内における加入と移入出は無視できるとする。漁具能率 \(q \) が時刻 \(t \) の経過に伴って変化する場合を考える。

時刻 \(t \) における資源尾数を \(N_t \)、自然死亡係数を \(M_t \)、1尾あたりの体重を \(w_t \) とする。各時刻における漁獲努力量 \(X_t \) の任意の配分のもとで、期待漁獲量 \(Y_t \) が計算できる。

\[
Y_t = N_t q_t X_t \left(1-e^{-M_t X_t} \right) w_t
\]

(5.1)

\[
N_t = N_0 e^{-\int \left(M_t + q_t X_t \right) dt}
\]

(5.2)

対象種の時刻 \(t \) における単価（市場価格）を \(p_t \)、当該漁業の漁獲物による単位努力あたり期待収入を \(y_t \)、単位努力あたり漁獲価値（変動費）を \(c_t \)、当該漁業以外の漁業業による単位努力あたり期待利益を \(x_t \)、単位期間あたりの価値の割引率を \((Clark 1985, 藪池ら1988) \) を \(ß \)、期間の終了時を \(T \) とするとき、期間中の漁家の所得に関する総現在価値 \(\phi \) は以下のようになる。ただし、各時点における漁獲努力量には上限 \(X_{max} \) があり、それぞれの期では当該漁業および漁業のいずれか一方へ出漁するものとする。対象種以外の種では、資源に与える漁獲の影響は無視できるとする。

\[
\phi = \int_0^T \left(N_t q_t X_t w_t p_t + y_t X_t - c_t X_t + x_t \left(X_{max} - X_t \right) \right) e^{-ß t} dt
\]

(5.3)

\(\phi \) を目的変数、 \(X_t \) を制御変数として、 \(\phi \) を最大化する \(X_t \) の配分を考える。なお、制約条件として、期間終了時に一定数以上の残し資源尾数 \(N_T \) を確保することを付与する。

5.2.2 最大原理による最適解の導出

\(X_t \) の最適な配分は、動的最適化手法の一種であるポントリヤギンの最大原理を用いて以下のように求めることができる。

環境変数を \(N_t \) とする。

\[
\frac{dN_t}{dt} = -(M_t + q_t X_t) N_t
\]

(5.4)

であるから、ハミルトンの \(H \) は次式で表せる。

\[
H = \phi + \lambda N
\]

(5.5)

\[
= \left(N_t q_t X_t w_t p_t + y_t X_t - c_t X_t + x_t \left(X_{max} - X_t \right) \right) e^{-ß t} - \lambda_t N_t \left(M_t + q_t X_t \right)
\]
ここで、λₜは

\[
\frac{d\lambda}{dt} = -\frac{\partial H}{\partial \lambda}
\]

を満たす補助変数である。

最大原理により、各tにおいてHを最大とする \{Xₜ\} が求める解となる。

5.2.3 数値解析

1）価格 \(\rhoᵣ\) が漁獲量 \(Yᵣ\) と独立に変化する場合

\[
H = \left((Nᵣqᵣwᵣ+uᵣ-cᵣπᵣ)e^{λᵣNᵣqᵣ} \right) Xᵣ
+ πᵣXₘₚₑλᵣNᵣMᵣ
\]

(5.7)

より、各tにおける最適漁獲努力量 \(Xᵣ^*\) は以下で与えられる。ここでパラメータの右肩に付したアステリック (*) は最適であることを示す添字である。

\[
\begin{align*}
Xᵣ^* &= 0 & \text{if} & (Nᵣqᵣwᵣ+uᵣ-cᵣπᵣ)e^{λᵣNᵣqᵣ} \leq 0 \\
Xᵣ^* &= Xₘₚₑ & \text{if} & (Nᵣqᵣwᵣ+uᵣ-cᵣπᵣ)e^{λᵣNᵣqᵣ} > 0
\end{align*}
\]

(5.8)

\[
λᵣ₊₁ = λᵣ + \frac{dλᵣ}{dt} = -qᵣXᵣwᵣe^{λᵣNᵣqᵣ} + λᵣ(1+Mᵣ+qᵣXᵣ) \quad (5.9)
\]

2）価格 \(\rhoᵣ\) が漁獲量 \(Yᵣ\) に依存して変化する場合

様々な場合が想定されるが、ここでは一例として、漁獲量が多いと価格が低下する、次のような一般的な価格関数を考える。

\[
\rhoᵣ = \tilde{\rho}ᵣ(a-bNᵣqᵣXᵣ)
\]

(5.10)

\(a, b\) は正の定数。\(\tilde{\rho}ᵣ\) は漁獲量と独立な変数で、価格の平均的な推移傾向を表す。このとき、

\[
H = -bpᵣ(Nᵣqᵣwᵣ)e^{πᵣXᵣ}
+ \left(\left(\left(\tilde{\rho}ᵣNᵣqᵣwᵣ+uᵣ-cᵣπᵣ \right) e^{λᵣNᵣqᵣ} \right) Xᵣ
+ πᵣXₘₚₑλᵣNᵣMᵣ \right)
\]

(5.11)

であるから、\(\frac{\partial H}{\partial Xᵣ} = 0\) を解くことによって、各tにおける最適漁獲努力量 \(Xᵣ^*\) は以下のように与えられる。

\[
\begin{align*}
Xᵣ^* &= 0 & \text{if} & \bar{Xᵣ} \leq 0 \\
Xᵣ^* &= \bar{Xᵣ} & \text{if} & 0 < \bar{Xᵣ} < Xₘₚₑ \\
Xᵣ^* &= Xₘₚₑ & \text{if} & \bar{Xᵣ} \geq Xₘₚₑ
\end{align*}
\]

(5.12)

ここで、

\[
\bar{Xᵣ} = \frac{apᵣNᵣqᵣwᵣ+uᵣ-cᵣπᵣ-λᵣNᵣqᵣe^{λᵣ}}{2bpᵣNᵣqᵣwᵣ²}
\]

(5.13)

\[
λᵣ₊₁ = λᵣ + \frac{dλᵣ}{dt} = qᵣXᵣwᵣ\tilde{\rho}ᵣ(2bNᵣqᵣXᵣwᵣ-a)e^{λᵣNᵣqᵣ} + λᵣ(1+Mᵣ+qᵣXᵣ)
\]

(5.14)

1）と2）のいずれの場合も実際の数値計算では、適当なλᵣを与えることから始め、Nᵣ、λᵣ、Xᵣ を \(t = 0 \rightarrow t = T\) の方向へ計算する。終端固定問題 \((Nᵣ ≥ \bar{Nᵣ})\) なので、 \(t = T\) のときに \([λᵣ = 0 \text{かつ} Nᵣ > \bar{Nᵣ}]\) または \([λᵣ = \bar{Nᵣ}]\) が満たされていなければ \(λᵣ\) を変えて計算を最初から繰り返す。 \([λᵣ = 0 \text{かつ} Nᵣ > \bar{Nᵣ}]\) または \([λᵣ = \bar{Nᵣ}]\) を満たす \(λᵣ\) がみつかったら、その \(Xᵣ\) が求めるべき最適な漁獲努力量の配分である。

5.3 運用データ

三重県和具地区でのイセエビ刺網漁業（漁期：10月〜4月）のデータを用いた（図5-1）。解析の単位期間は「日」とし、漁獲努力値 \(Xᵣ\) は変数で表した。1 периодあたりの出漁可能効用 \(Xₘₚₑ\) は現状を鑑みて30隻とした。初期資源尾数は73,000尾、漁期終了時に残すべき資源尾数 \(\bar{Nᵣ}\) は20,000尾（漁獲率73%）とした。解析の対象とする期間は短いため、漁期中の自然死亡 \(Mᵣ\) 、割引率 \(δ\) は無視できるものとした（\(Mᵣ = 0\）、 \(δ = 0\)）。

漁具効率 \(qᵣ\) は、第3章のモデルIVによる1990年10月〜1991年4月漁期についての推定値を用いた。解析は2群以上の対象として行い、サイズにより漁獲選択性は考慮しなかった（ \(ρ = 1\)）。イセエビの単価 \(\rhoᵣ\) の漁期内における推移傾向は、和具市場における1972年〜1993年の20期間分の日別単価データを用いて算出した。刺網の混獲物（魚類、サザなど）による期待収入 \(yᵣ\) は1993年10月〜1994年4月漁期における日別実績値の13日移動平均値を用いた。単位努力あたり採獲効率 \(eᵣ\) は、イセエビ刺網漁業を含む漁業者への聞き取り調査によって推定した。イセエビ刺網漁業以外の漁業漁業体の期待補助 \(πᵣ\) は、1993年10月〜1994年4月における漁業漁業での水揚げ金額の13日移動平均値から、別途の聞き取り調査による採獲効率を差し引いて推定した。期間中には言
5.4 解析結果

(5.8)式から、価格が漁獲量と独立の場合、漁獲を行うべき時期には最大の漁獲努力を払う、抑えれる時期には全く漁獲を行わない方策が最適であることが解る。価格が漁獲量に左右される場合は、中間的な漁獲努力の配分方策も考慮すると(5.12式)

A〜Dの各ケースについて求められた漁獲努力の最適配分と、期待利益の推定結果を図5-2〜図5-7に示した。

目的関数にイセエビの漁獲金額のみを考慮したAの場合(図5-2)は、価格p_iの高い時期(12月、2〜4月)に出漁し、他の時期には出漁しないのが最適である。刺網の操業経費c_iも考慮に入れたBの場合(図5-3)は、価格の高い時期に加えて、漁具能率q_iが比較的高く、効率的な漁獲の期待できる時期(11月、12月の中・下旬)にも出漁する方策が最適である。さら
に、混獲物による収入が悪く、考慮に入れたCの場合（図5－4）では、イセエビに対する漁業経費q_rが低く、漁獲金額が少なからず期待できない時期でも、混獲物による期待収入が高ければ出漁するのが良い方策である（1－2月）。混獲物による収入q_r、漁業経費q_c、漁業経費に期待される利益r_cのすべてを考慮に入れたDの場合（図5－5）では、各漁業経費で相当した利益が期待できる時期には漁業経費を優先的に出漁し、イセエビ漁業をその間隙に出漁する方策が最適である。価格関数を導入したEの場合（図5－6）では、漁業経費q_rが高くて漁獲量が多いと期待される時期には、出漁数を多くするこ約によって漁獲量を抑えた、価格の下落を防ぐような配分が最適であるという結論が得られた。1日に出漁できる最大漁獲数X_{max}を変化させたFの場合（図5－7）では、X_{max}の値が大きければイセエビの価格p_rが高く、かつ漁業経費q_cも比較的高い漁期末に集中して出漁する方策が最適で、X_{max}の値が低くなるに従って他の時期に出漁を順に拡げる方策が最適となった。また、X_{max}を一定として漁期終了時の取り残し資源尾数\(\hat{N}_r\)を変化させた場合（漁期中の漁獲率を変化させた場合）も同様の現象を認めた。すなわち\(\hat{N}_r\)が大きければイセエビの価格p_rと漁業経費q_rが高い漁期末に集中して出漁する方策が最適で、\(\hat{N}_r\)を小さくすると他の時期に出漁を拡げる方策が最適となった。

図5－3 「漁業努力の漁期内最適分配の解析結果、目的関数をD（Aに加えて漁業経費q_cを考慮に入れる）とした場合、a）漁業経費q_r、c）市場価格p_r、e）漁業経費の漁業経費q_cは参考のため、示した適用資料の抜粋である。g）漁業努力X_rの最適配分、i）期待されるイセエビ漁獲金額、市場価格の高い時期に加えて、漁業経費の比較的高い時期（矢印）にも出漁する配分が最適なる。」

図5－4 「漁業努力の漁期内最適分配の解析結果、目的関数をC（Bに加えて混獲物による収入q_rを考慮に入れる）とした場合、a）漁業経費q_r、c）市場価格p_r、d）漁業経費の混獲物による期待収入q_rは参考のため、示した適用資料の抜粋である。g）漁業努力X_rの最適配分、i）期待される利益の内訳、混獲物による期待収入の高い時期（矢印）にも出漁する配分が最適なる。」
5.5 論 確

山内(1996)は週問性魚類などのように漁期終了後に産卵して産卵を終える一回産卵型の種について、資源の有効利用と、資源維持のために必要な取り残し資源数を同時に考慮した最適漁獲方策を、最大原理によって導いた。本章で導出したモデルは漁獲給与、漁獲物中の出水、出水漁業による所得、価値の利潤率も導入され、より現実に即した対応を可能とした。漁獲係数を漁具能率と漁獲努力の積で表すことにより、漁具能率の変化と漁獲努力の調節を独立して扱うこともできる。価格pが漁獲量Yに依存して変化する場合の解析例も示した。

本調査の最大原理は階層的価値の時間変化をもとに、制御条件付の最適化問題を解くことができる。

\[
\frac{d\lambda}{dt} = -q_x w p e^{-\lambda t} + \lambda (M_t + q_x X_t) \quad (5.15)
\]

これを時刻tからTまで積分すれば、
\[
\lambda_t = \int_0^T \frac{d\lambda}{dt} e^{-\lambda t} ds + \lambda T e^{-\lambda T} \quad (5.16)
\]

となる。右辺の第1項は、時刻tで1個体を残すことによて時刻Tまでに得られる漁獲金額の総現在価値であり、一表、第二項は時刻tで取り残した1個体に由来する期間終了時での残存価値で、一回繁殖型の種については時刻Tでの産卵に関する価値の経済的評価である。山内(1996)。多回繁殖型の種では集団期の供給漁業がされる価値に関する経済的評価を解釈できる。λ_tはこれらを合計した値、すなわち時刻tで1個体を残すことによっ
イセエビの資源評価と漁業管理

（5.8）式より，時間 t で単位努力量を投入した場合に直
接得られる総現在価値の増加量（限界価値）が，もし
単位努力量を投入しなかった場合に（将来）得られるで
あらぶ価値の増加量（限界価値）と比較して大きい場合
は時刻 t において最大限の漁獲努力を投入し，そうでな
い場合は全く漁獲を行わないことが最適な方策であるこ
とが解る。

最大原理は元来，制御工学の分野で開発されたもので
あるが（Fan 1966, 近藤 1984），生活史戦略をはじめ
とする数理生物学の分野でも積極的に活用されている
（King and Roughgarden 1982a, 1982b, Chiariello
and Roughgarden 1984, lwasa and Roughgarden 1984，
厳佐 1985, 1990）。水産学の分野への活用例としては，
水産生物の生活史戦略への適用（Kitahara et al. 1987，
Hiyama et al. 1988, 松山 1992, Hiyama and Kitahara
1993a, 1993b）。資源管理や最適漁獲方策への応用
（Reed 1974, Clark 1976, Getz 1979, Reed 1979）

表 5-1．時間軸上の最適化問題に適用した場合の最大原理と
一般的な非最適化手法の特性

<table>
<thead>
<tr>
<th></th>
<th>最大原理</th>
<th>一般的な非最適化手法</th>
</tr>
</thead>
<tbody>
<tr>
<td>有効な問題</td>
<td>追加軸上，離散軸上の両方</td>
<td>無限軸上のみ</td>
</tr>
<tr>
<td>時間ステップ数</td>
<td>多い</td>
<td>一般に少ない</td>
</tr>
<tr>
<td>解析に必要な時間</td>
<td>短い</td>
<td>長い</td>
</tr>
<tr>
<td>解析過程の反映の様子</td>
<td>可能</td>
<td>単なる数値的な最大化</td>
</tr>
<tr>
<td>数</td>
<td>一般の最適化問題</td>
<td>高い</td>
</tr>
</tbody>
</table>

佐久間（1990）は福岡県磯部漁業協同組合のホッキガイ
漁業の事例をもとに漁業管理の意思形成条件について考
察し，「漁業基盤の充実は資源管理への移行をスムーズ
にした要素と考えられる」とした。さらに，「一部の漁
業資源に対する管理が他の資源の利用にも影響すること
は，資源の限界原理的利用の概念を使うとうまく説明で
きる」と指摘した。本章での解析は，望ましい漁業管理に
ついて考察する際，対象とする資源から得られる効益の
検討に加えて，業種構造などの諸条件に対する配慮が重

図 5-7．漁獲努力の期間内最適関数の解析結果。1日に出漁
できる最大漁獲数 X_max を変化させた場合（F）。目的関数は
B と同様（イセエビの漁獲金額＋漁網の操業経費 C）と
した。X_max が低くなるに従って出漁日を拡げる必要があ
る。
要な意味をもつことを解析的に提出したのである。資源管理における兼業基盤の重要性を示唆する。本章で兼業漁業として取り扱ったトラフ延縄漁業は、和具地区では資源の増加に伴って1990年から新規に開始された漁業であり、この漁業の開始に伴って地域の漁業形態（兼業構造）が大きく変化し、結果的にイセエビ刺網漁業の漁獲努力の最適配分も変化することとなった。

本章の解析では、当該漁業と兼業漁業への同一の日に出漁しないと仮定した。実際には操業時刻が異なる漁業もあるため、条件によっては同一の日に複数の漁業へ出漁することが可能な場合もあり得る。兼業漁業には全てのイセエビ刺網漁業者が等しく出漁するとは限らず、漁業によって漁業のパターンも若干異なる。そこで検討した最適配分は、すべての漁業者が協力して同一の行動をとる、いわゆる「単独所有者最適方策」（Clark 1985）であるが、漁業者集団内の競争条件下における場合はモデル化手法より複雑となり、得られる最適方策は漁業者ごとに異なったものとなるであろう。

ここでは、将来における状況の変動を考慮しないと仮定であったため、平均的で、全体の変動傾向をなめらかに代表するようなデータを極力採用して解析するよう努めた。混獲物や兼業漁業による収入の移動平均値を用いたのもそのためである。固定的な漁獲戦略の組み立てにはこのような方法が有効であろうが、時々刻々と状況が変化する現実の漁業での意思決定過程に於いては、短期的な将来予測と、モニタリング調査等を通じて得られる各時点での情報更新との組み合わせの中で、今回の手法を応用していく方向を考えられよう。

Doll（1988）は従来型の長期的視点に基づく漁業経済モデルについて評論し、経済的側面からみると漁業漁業では短期的な視点が重要であるとした。彼は、従来から努力量の定義と生産過程に関する仮定について再検討し、漁船の短期的な費用関数、供給曲線や生産関数に結びつけて議論を展開した。Doll の議論は、漁獲労用量の数値的な評価が容易な、底曳網や桁網などの曳き網漁具による漁業に限定されるが、本論文で展開したような、漁獲過程を忠実に反映した（見かけ上変化する）漁具能率の概念を導入すれば、漁獲努力量を基にした漁獲過程の詳細な記述ができるため、刺網漁業やかご漁業などで短期的な生産関数に基づく漁業経済学的検討が可能となる。
第6章 産卵資源量の経済価値を考慮した
加入資源の最適漁獲方法

6.1 はじめに

前章では所与の資源の有効利用を目的として、漁
期内における漁獲努力の最適配分について検討を加えた。
本章ではより長期的な視点に基づき、イセヒビの生涯を
対象とした最適漁獲策について論識を進める。

加入資源の有効利用に関する従来の論識は、漁獲開始
年齢や漁獲係数を変化させた時に想定される加入する
かいう漁獲量や漁獲価格の検討が中心であった。代表的なもの
に、Beverton and Holt (1957) の漁獲量線図があげられる。イセヒビ類については Saita et al. (1979),
Morgan (1980), Ebert and Ford (1986), Anllala
and Breen (1989) などの検討例があり、クロスラーに
ついては Campbell (1989) の総説に詳しい。

一般の解釈では、漁獲開始年齢以上に達した群は毎年
一定の漁獲係数で漁獲され、漁期内での成長、価格変動
は考慮されていない。示される状況が仮定される。これに対して前章の最大原理を導入すると、より柔軟な
解析が可能である。例えば、漁獲を行う期間と漁獲休止
期間の配置については一定の制約を設けなくても解析が
可能であり、数年における漁獲方策と漁期内での漁獲方
策を連続した視点で同等に扱うことができる。

従来の加入する漁獲量や漁獲価格の最大化を目標と
する管理には、再生産管理の概念が含まれていない。目
標とするものは所与の加入資源から得られる『利益の最
大化』のみであり、結果的に資可能性が生存可能な個体
群が確保できず乱獲を招いてしまう危険性を否定できな
い。乱獲の回避のためには、資源の平衡状態の維持に必
要な漁獲量の確保のための何らかの制限策（基準）を
別途検討するか、あるいは「無効利用」の概念の中に漁
獲量の確保（平衡状態の維持）に関する視点を制約条件
としてあらかじめ組み込んでおく必要がある。

ここでは、前章で導出したモデルに、漁獲に関与する
親資源の価値の評価の概念を導入し、漁獲量の確保と加
入資源の有効利用を同時に達成するための管理モデルを
示した。イセヒビの加入資源に適用し、資源の平衡状
態を維持しながら最大限の有効利用を達成するための
最適漁獲方策の検討を行った。

6.2 単一年級群の最適漁獲方策

6.2.1 モデルの構成と漁獲方策の導出および數値解析

前章で導出した目的関数 (5.3式) に、産卵に関与す
る親資源の経済価値を表す項を導入し、漁獲から直接
得られる漁業所得（総経済価値）との和を目的関数とす
る。各群の選択的な漁獲が可能であると仮定する。

\[
\phi = \int_0^\tau \left(\frac{N}{r} + \left(X, X_w, p_1 + y, X_t, c, X_t + \pi(X_{\max} - X_t) \right) e^{-\lambda t} \right) \right) dt \tag{6.1}
\]

ここで、 \(\tau \) ：産卵卵 1 万粒あたりの経済的評価金額を表
す係数。

\(E_t \) ：時刻 \(t \) における個体あたり産卵数（万
粒）。

\(T \) ：寿命もしくは漁獲終了時。

前章と同様,

\[
N_t = N_0 e^{-\lambda t} \tag{6.2}
\]

の制約条件を付与する。

\(\{X_t(0, X, q, u, r) \} \) の経済価値は、ボントリュギンの最大原理を
用いて以下のように求めることができる。

\[
H = \phi + \lambda N_t \tag{6.3}
\]

ここで、 \(\lambda _t \) は

\[
\frac{d\lambda}{dt} = -\frac{\partial H}{\partial \eta} \tag{6.4}
\]

を満たす補助変数である。

ここでは価格 \(p_1 \) が漁獲量 \(Y_t \) に独立に変化する場合を
考えられるが、価格 \(p_1 \) が漁獲量 \(Y_t \) に依存する場合について
も同様に解析を展開できる。

各 \(t \) における最適漁獲方策 \(X^* \) は以下で与えられ
る。

\[
X^* = \begin{cases}
0 & \text{if } (N, n, w, p_1 + y, c, -\pi) e^{-\lambda t} \\
-\lambda N_g, & \text{if } 0 \leq -\lambda N_g \\
X_{\max} & \text{if } (N, n, w, p_1 + y, c, -\pi) e^{-\lambda t} \\
-\lambda N_g, & \text{if } > 0
\end{cases} \tag{6.5}
\]

**28 山川 卓・松宮義満・山内 洋：イセヒビの産卵資源量の経済価値を考慮した加入資源の最適漁獲方策．平成7年度日本水産学
会秋季大会講演要旨集，1995，p. 22．

—53—
この場合は終端自由問題なので、横断条件として
\(\lambda_T = 0 \) 付与する。数値計算では、適当な \(\lambda_0 \) を与える
ことから始め、 \(\lambda \) に関する近似式

\[
\lambda_{t+1} = \lambda_t + \frac{dt}{\lambda_t} \\
= -q_{X_t} w_t p_t e^{-\tau(X_t)^2} + \lambda_t (M_t + q_t X_t)
\]

と(6.2)式、(6.5)式を用いて \(N_t, \lambda_t, X_t \) を \(t = 0 \) から \(t = T \)
の方向へ計算する。 \(t = T \) のときに \(\lambda_T = 0 \) が満たされ
ていなければ \(\lambda_0 \) を変えて計算を最初から繰り返す。

\(\lambda_T = 0 \) を満たす \(\lambda_0 \) がみつかれば、そのときの \(\{X_t\} \) が
求めるべき最適な漁獲努力の配分である。

6.2.2 モデルの解釈

(6.3)式は資源の平衡状態を維持するという制約条件
のもとで、前章の(5.3)式の目的関数から直接導くこと
もできる（松田1996，Takenaka and Matsuda 1997）。

資源が平衡状態にあるためには \(N_0 \) 個の卵に由来する
時刻 \(T \) までの総産卵数 \(P_T \) が \(N_0 \) 以上でなければならな
い。

\[
P_T = \int_0^T T E_i dt \geq N_0
\]

(6.7)

(6.2)式と(6.7)式の制約条件のもとで(5.3)式の最大化を
考えると、ハミルトニアン \(H \) は

\[
H = \frac{d\phi}{dt} + \lambda_t \frac{dN_t}{dt} + \tau R_t \frac{dt}{dt} \\
= (N_t q_t w_t p_t + \tau(X_t - c_t(X_t) - \pi_t(X_{max} - X_t))] e^{-\tau(X_t)^2}
\]

\(+ \tau_t X_t e^{-\tau(X_t)^2} - \lambda_t N_t (M_t + q_t X_t)
\]

(6.8)

となる。

ここで、 \(\lambda_t, \tau_t \) はそれぞれ、

\[
\frac{d\lambda}{dt} = -\frac{\partial H}{\partial N} \\
\frac{d\tau}{dt} = -\frac{\partial H}{\partial P}
\]

(6.9)

(6.10)

を満たす補助変数である。

ここで

\[
\frac{\partial H}{\partial P} = 0
\]

なので、 \(\tau_t \) は定数 \(= \tau \) となる。したがって(6.8)式
は(6.3)式と同様。\(\lambda \) 式を目的関数として最大化を
図ることは、資源の平衡状態を維持するという制約条件
のもとで(5.3)式の最大化を図ることと同等であること
が証明できる。なお、本章における \(\tau \) は松田（1996）の
\(\eta \) （打撃係数；impact coefficient）に相当し、将来の

産出卵1個あたりの経済的評価（Takenaka and
Matsuda 1997）と解釈することもできる。

(6.4)式より,

\[
\frac{d\lambda}{dt} = -q_{X_t} w_t p_t e^{-\tau(X_t)^2} + \lambda_t (M_t + q_t X_t)
\]

(6.11)

である。これを時刻 \(t \) から \(T \) まで積分すれば、

\[
\lambda_t = \int_0^T T E_i e^{-\tau(X_t)^2} ds + \lambda_t e^{-\tau(X_t)^2} ds
\]

(6.12)

となる。右辺の第一項は、時刻 \(t \) で1個体を獲り残し
た場合に、それに由来して \(T \) までに得られる漁獲金額
の総現在価値、第二項は時刻 \(t \) で獲り残した1個体に
由来する、\(T \) までの産出卵の経済価値、第三項は時刻 \(t \)
で獲り残した1個体に由来する期間終了時までの残存価
値を考えることができる。\(\lambda \) はこれらを合計した値、すな
わち時刻 \(t \) で1個体を残すことをによって発生するであろ
う将来の価値の総和と考えることができる。なお、ここ
では横断条件により \(\lambda_T = 0 \) なので、第三項はゼロと
なる。第一項を \(\phi_t \) 、第二項を \(R_t \) と置くと、 \(\phi_t \) は松田
（1996）の収穫価（future harvest value）あるいは山内
（1996）の将来漁獲価（future fishery value）に相当し、
\(R_t \) は \(t \) における Fisher の繁殖価（reproductive value）
に相当する。

(6.12)式は、

\[
\lambda_t = \phi_t + \tau R_t
\]

(6.13)

と書けるので、(6.5)式は

\[
\begin{align*}
X_t &= 0 \text{ if } V_t \leq \phi_t + \tau R_t \\
X_t &= X_{max} \text{ if } V_t > \phi_t + \tau R_t
\end{align*}
\]

(6.14)

と書き直すことができ。ここで、

\[
V_t = \left(\frac{w_t p_t + (1 - c_t - \pi_t)}{N_t q_t} \right) e^{-\tau(X_t)^2}
\]

(6.15)

であり、 \(V_t \) は時刻 \(t \) において1個体を獲り残すことによっ
て得られる漁家所得の総現在価値と考えることができる。

(6.14)式より、時刻 \(t \) における1個体の漁獲によって
得られる漁家所得の総現在価値の増加量（ \(V_t \) ；本論文
では以下「直接現在価」と称す）が、もし漁獲しなかっ
た場合に（将来）得られるであろう漁獲金額の総現在価
値（ \(\phi_t \) ；「将来収穫価」と称す）と産出卵の経済価値
（ \(\tau R_t \) ；「繁殖経済価」と称す）の総和と比較して大き
イセエビの資源評価と漁業管理

い場合は時刻で最大限の採獲努力を投入し、したがって
い場合は全く漁獲を行わない方策が最適であることが解
る。さらに(6.15)式より、期待される漁獲尾数が多いと
き（\(N_q \) が大きいとき）は混獲物による収入 \(y_i \)や操作
経費 \(c_i \)，産業収入 \(N_q \)が最適漁獲方策に与える影響は比
較的小さいのでに対し、資源尾数が少ない漁業経済が低
いために期待漁獲尾数の少ないときは、これらの要因が
最適漁獲方策に与える影響が大きくなることが解る。

6.2.3 適用データ

適用データは前章と同様である。イセエビは雄と雌で
大きく成長が異なるため、解析は雌雄別に行った。雌
では産卵数 \(E_i = 0 \) なので、産出卵の経済的評価分額の
考慮は行っていない。1日あたりの出産尾数 \(x_{max} \)
は前章と同じ30尾とした。漁獲能率 \(q_i \) は、第3章のモ
デルAによる1990年10月～1991年1月漁期についての推
定値を用いた。サイズによる漁獲選択性は考慮しなかっ
た（\(a = 1 \)）。自然死亡係数は \(M = 0.20/365 \)，拡散率
は \(s = 0.04/365 \)とした。成長曲線は第2章で求めた成
長曲線のうち、円形的な成長を示している1991年を採
用した。1時群の初期漁獲尾数は第4章で \(M = 0.2/365 \)
として求められた尾数の5％年の平均値（雄66,182尾、
雌39,335尾）を用いた。

目的関数には、前章で検討した5通りのケースうち、
A.イセエビの漁獲分額のみを考慮し、混獲物による収
入や漁業経費、産業漁業による経済的損失は考慮しない場合
（\(y_i = 0, c_i = 0, x_i = 0 \)；価格は漁獲量と独立）を例示
的に取り上げ、\(r \)の値を変化させたときの最適漁獲方策
の変化について検討した。B～Eの各ケースについても
同様な検討が可能である。

市場価格については、前章では漁獲状況を考慮する必
要がないので全銘柄の平均値を用いたが、ここでは
漁獲状況を考慮し、各銘柄の平均価格別に銘柄別
（「小」：80g～120g、「中」：120g～380g、「特大」：380
g以上）の価格を当てはめて計算した。図6-1に、銘
柄別単価の推移（和都市場における1972年～1993年の20
漁期分の日別の単価データを用いて算出）と1尾あたり
の推定体重から計算された、雌雄別銘柄別の1尾あたり価
格の推移を示した。

雌1個体あたりの産卵数については、金森（1988）の
頭胸甲長（CL・mm）と卵卵数（E・万粒）の関係式

\[
E = 1.35CL - 49.64 \quad (\text{一番子}) \quad (6.16)
\]

\[
E = 0.30CL - 5.13 \quad (\text{二番子}) \quad (6.17)
\]

に従った。猪野（1950）は抱卵エビの飼育および抱卵個
体の繁殖状態の観察から、天然では25%程度の雄個体が
二番子を形成すると推定した。ここでは一番子と二番子
を併せた年間の産卵数として、

\[
E = 1.35CL - 49.64 + 0.25 \times (0.30CL - 5.13)
\]

\[
= 1.43CL - 50.92
\]

（6.18）

を用いた。図6-2に(6.18)式と第2章で求められた
雌の成長式から計算した銘柄の1個体あたり年間推定産
卵数を示した。なお、10尾以降は産卵は行われないと仮
定して解析を進めた。

図6-1. 三重県和都におけるイセエビの1尾あたり価格の推
移（銘柄）。上：鰷、下：白鰷。銘柄別単価の推移（1972年
～1993年の20漁期毎の日別の単価データから算出）と銘柄
の1尾あたり推定体重（第2章）を用いて推定した。
漁期は三重県漁業調査規則で定められた10月1日から翌年4月30日とし、漁獲努力の最適配分はその期間内で検討した。産卵期および孵化期は三重県では6月～8月なので、便宜上、魚の推算日（8月1日；第2章）の直前の7月31日に集中して漬卵・孵化が起こることとして解析した。すなわち、各鰭が終了する最終日に産卵と孵化が起こるとした。漁期が産卵期に及ぶ場合は繁殖時期や孵化期のばらつきについても考慮する必要があるが、この場合は漬卵と産卵期は重複しないので問題はないと考えた。

![漬卵数推移グラフ](image)

図6-2 イセエビの雌1個体あたりの年間漬定産卵数 一番子と卵子の期待値の合計で示した。便宜上、魚の推算日 の直前の7月31日に集中して産卵および孵化が起こると仮定し、(6.13)式に基づいて計算した。すなわち、各鰭が終 了する最後の日に産卵と孵化が起こるとしたときの鰭別産卵数である。

6.2.4 解析結果
解析結果の概要を図6-3～図6-8に示す。任意のrについて漁獲努力の最適配分を求めることができた。
雌の場合(図6-3)と雄でr=0とした場合（卵の経済価値を考慮しない；図6-4）では、直接現在価VJaが将来収益価Vfより高い場合は漁獲し、低い場合は漬獲しない方策が最適となる。雌雄ともに2鰭の最後から漬獲を始め、漬が進むに従って漬獲基準を増やして行く方策が最適である。現状では雌雄ともに1鰭から漬獲を始め2鰭を漬獲の主調として利用しているので（図2-1、図2-2）、加入資源の有効利用を図るためには少なくとも漬獲開始鰭の引き上げを図る必要がある。

本節では漬獲物の収入、操業費、乗漬業を考慮していないため、直接現在価は1尾あたり価格に割引率をかけたものに等しい(6.15式)。したがって最適漬獲方策は鰭別の成長に加えて、漬期内における価格変動

に大きく左右される。
卵の経済価値を考慮すると、直接現在価VJaが将来収益価Vfと繁殖経済価Vfの合計よりも高い場合は漬獲し、そうでない場合は漬獲しない方策が最適となる（図6-5、図6-6）。
rの値を大きくするに従って、雌の漬獲開始鰭をより高く引き上げる必要がある。すなわち、イセエビがより大きく成長するまで待つと、十分漬卵させながら漬獲する方策が最適となる。産出卵の経済価値を考慮すると、現実の漁業では、r=0のケースで必要と考えられたよりもさらに幅広な漬卵開始鰭の引き上げが必要となる。
r=6（円／万粒）すると雌の漬獲開始鰭は4鰭（図6-5）、r=10（円／万粒）では5鰭となる（図6-6）。なお、r=10（円／万粒）で7鰭、8鰭の漬獲を控えるようにするのでは、雌の7鰭以上の高齢卵では6鰭群に比較して1尾あたりの価格が計算上、低くなるためである（図6-1）。図6-7に、rの値を変化させたときの漬卵年間漬獲率（年間漬卵数／初期漬卵数×100）の一覧を示した。
rの変化に伴う、最適漬獲方策で得られる漬獲金額と産出卵数の変化を示した（図6-8）。漬獲金額は加入（1鰭群の初期漬卵数）あたりの漬獲金額（YPR；Yield per Recruit）、産出卵数は、漬獲が行われないと仮定した場合の加入あたり産卵数に対する比（SPR；Spawning per Recruit, Mace and Sissenwine 1993, Mace 1994）で示した。
rの値が小さい場合はイセエビから直接得られる加入あたり漬獲金額は高く、逆に加入あたり産卵数は少ない。
r=0では%SPRの値は31%である。rの値が大きくなると、r=4～12（円／万粒）の間で漬獲金額は急激に減少し、逆に産卵数は増加する。漬獲金額と産卵数の関にはトレードオフの関係がある。rの値が12（円／万粒）以上になると漬獲金額、産出卵数ともとんど変化しない。これは、卵の経済価値が極度に高く設定したために、将来産卵に関与する可能性のある個体（繁殖価が正の個体）は全く漬獲しない方策が最適となるためである。
以上のことから、rの値を適切な値に設定することにより、資源の維持に必要な産卵数を確保することが可能で、それを制約条件としながら加入あたり漬獲金額を最大化するような最適漬獲方策を決定することが可能である。

山川 股
図6-3．雄における漁獲努力Xの最適配分とそれによって得られる1隻あたり漁獲金額。直接現在価Vが将来収穫価より高い場合は漁獲し、低い場合は漁獲しない方策が最適となる。
図8-4. 種における漁獲努力Vxの最適配分とそれによって得られる1隻あたり漁獲金額、卵の経済価値を
考慮しない場合（r=0）の解析結果である。直接包現在価Vが将来収穫価MXより高い場合は漁獲し、低
い場合は漁獲しない方策が最適となる。
図6-5. 雌における漁獲努力の最適配分とそれによって得られる1隻あたり漁獲金額、卵の経済評価金額を τ = 6（円/万粒）とした場合、直接現在価が将来取扱価格と繁殖経済価の合計よりも高い場合は漁獲し、低い場合は漁獲しない方策が最適となる。
図6-6、雌における漁獲努力x_tの最適配分とそれによって得られる1隻あたり漁獲金額、現の経済評価金額を$t=10$（円／万枚）とした場合、直線現在値x_tが将来収益値r_tと漁獲経済評価t_Rの合計よりも高い場合は漁獲し、低い場合は漁獲しない方策が最適となる。$t=6$の時よりも高齢になってから漁獲することとなる。
6.3 複数齢群の同時漁獲モデル

前節では特定の齢群を選択的に漁獲できるという仮定を設けてイセエビの生涯にわたる漁獲努力の最適配分について検討した。しかし、実際の漁場には複数の齢群が混在して分布しているため、刺網漁業では選択的漁獲は事実上困難である。ここでは、複数齢群の同時漁獲を前提とした最適漁獲方策を検討するモデルを導出する。魚体サイズによる漁獲選択性や選び別の扱いを導入することによって、より現実に即したモデルを構築し、イセエビ刺網漁業への適用を図る。

6.3.1 モデルの構成と最適解の導出および数値解析

資源が平衡状態にあり、0～j_max齢の齢群の群が漁場内に混在する状態を考える（図4－3）．刺網にはシグモイド型の曲線で表される漁獲選択性があり、小型群に対しては選択率が低く、大型群に対しては選択率が高いものとする。毎年、ある一定の漁獲効率配分に従って操業を繰り返すとする。1年間がt_max日からなると、0～t_max日目までの漁獲努力の最適な分配と漁獲選択性曲線に関する最適なパラメータを同時に算出する。

j齢i日目の齢別別の資源尾数をN_{ij}(i=1, j=0)、j齢群の齢群別の初期資源尾数をN_{ij0}とする。各jにおける漁獲努力量X_iの任意の配分のもとで、各群の期待漁獲量Y_{ij}を計算できる。

\[Y_{ij} = N_{ij} \frac{\rho(L_{ij})q_iX_i}{M_{ij} + \rho(L_{ij})q_iX_i} \left(1 - e^{-\left(\omega_{ij} + \rho(L_{ij})q_iX_i\right)}\right) w_{ij} \]

\[N_{ij} = N_{ij0} e^{-\left(\omega_{ij} + \rho(L_{ij})q_iX_i\right)\Delta t} \]

ここで、

\[M_{ij} : j齢i日目的齢群別の自然死亡係数 \]

\[w_{ij} : j齢i日目的齢群別の体長 \]

\[L_{ij} : j齢i日目的齢群別の個体に対する刺網の漁獲選択性（相対的漁獲効率） \]

\[\rho(L_{ij}) = \frac{1}{1 + \exp\left(\alpha - \beta L_{ij}\right)} \]

\[\alpha, \beta : \text{シグモイド型曲線（ロジスティック曲線）のパラメータ} \]

（50%選択体長：1/β, 50%選択体長付近における曲線の勾配：a/β/4）

である。

図6－7．単一年齢群モデルにおける。rの値を変化させた時の各年間漁獲量による年別年間漁獲率（年間漁獲尾数／初期資源尾数×100％）の模倣。rが16以上になると結果が変化しなくなるため、r=16（円／万粒）までの範囲を表示した。

図6－8．rの変化に伴う、年間漁獲理由で得られる漁獲価額と産出数の変化（非）1単一年齢群モデルでの計算結果である。漁獲価額は1齢群の初期資源尾数あたりの漁獲価額（YPR：Yield per Recruit）産出数は、漁獲が行われないと仮定した場合の産出あたり資源尾数に対する、それぞれの標準確率で漁獲が行われた場合の産出あたり資源尾数の比（%SPR：Spawning per Recruit, Mace and Siasenwine 1993, Mace 1994）で表した。rが16以上になるとYPR、%SPRともに変化しないのでここでは、r=20（円／万粒）までの範囲を表示した。
ここでは資源が平衡状態にあると仮定し、最適漁獲方策のもとでの輸出量と総資源尾数が毎年一定である状況を考える。各種群の初期資源尾数に関する制約条件として,

\[N_{i(t+1)} = N_{i\text{max}} \quad (6.22) \]

を付与する。

複数種群の同時漁獲、雌雄別の取り扱い、魚体サイズによる漁獲選択性を考慮して目的関数を以下のように表し、その最大値を考える。

\[
\Phi = \int_0^{t_{\text{max}}} \left[\sum_{i=1}^{I} \sum_{j=0}^{J} N_{ij} \rho(L_{ij}) q_i X_{ij} w_{ij} P_{ij} + y_i X_i
- c_i X_i + \pi_i (X_{\text{max}} - X_i) \right] e^{at} + \frac{1}{2} \sum_{i=1}^{I} \sum_{j=0}^{J} \epsilon N_{ij} E_{ij} \]
\[dt \quad (6.23) \]

ここで \(p_{ij} \) は \(j \) 種 \(t \) 日目における雌雄別の単価（円/kg）, Bは一年の終了日, E_{ij} は \(j \) 種 \(t \) 日目における1尾あたりの産卵数, ただし \(E_{ij} = 0 \) (if \(i = 1 \)), である。

\[
\frac{dN_{ij}}{dt} = - \left(M_{ij} + \rho(L_{ij}) q_i X_i \right) N_{ij} \quad (6.24) \]

であるから、ハミルトニアン \(H \) は次式で表すことができる。

\[
H = \frac{d\Phi}{dt} + \frac{1}{2} \sum_{i=1}^{I} \sum_{j=0}^{J} \lambda_{ij} \frac{dN_{ij}}{dt} \\
= \left\{ \sum_{i=1}^{I} \sum_{j=0}^{J} N_{ij} \rho(L_{ij}) q_i X_{ij} w_{ij} P_{ij} + y_i X_i - c_i X_i
+ \pi_i (X_{\text{max}} - X_i) \right\} e^{at} + \frac{1}{2} \sum_{i=1}^{I} \sum_{j=0}^{J} \epsilon N_{ij} E_{ij}
- \sum_{i=1}^{I} \sum_{j=0}^{J} \lambda_{ij} N_{ij} \left(M_{ij} + \rho(L_{ij}) q_i X_i \right) \]
\[(6.25) \]

なお、(6.25)式は前節と同様に、資源の平衡状態を制約条件として付与すれば、(6.23)式の目的関数の産出形の経済的評価関数に関する項（最終項）を除いた間数からも直接導くことができる。

各 \(t \) における最適漁獲努力 \(X_i^* \) は以下で与えられる。

\[
X_i^* = 0 \\
\text{if} \quad \left(\sum_{i=1}^{I} \sum_{j=0}^{J} N_{ij} \rho(L_{ij}) q_i w_{ij} P_{ij} + y_i - c_i X_i \right) e^{at}
- \sum_{i=1}^{I} \sum_{j=0}^{J} \lambda_{ij} N_{ij} \rho(L_{ij}) q_i \leq 0 \]
\[X_i^* = X_{\text{max}} \\
\text{if} \quad \left(\sum_{i=1}^{I} \sum_{j=0}^{J} N_{ij} \rho(L_{ij}) q_i w_{ij} P_{ij} + y_i - c_i X_i \right) e^{at}
- \sum_{i=1}^{I} \sum_{j=0}^{J} \lambda_{ij} N_{ij} \rho(L_{ij}) q_i > 0 \]
\[\lambda_{ij(t+1)} = \lambda_{ij} - \frac{d\lambda_{ij}}{dt} \\
= -\rho(L_{ij}) q_i X_{ij} w_{ij} P_{ij} - \epsilon E_{ij}
+ \lambda_{ij} \left(1 + M_{ij} + \rho(L_{ij}) q_i X_i \right) \]
\[(6.26, 6.27) \]

ただし、横断条件として

\[
\lambda_{ij(t+1)} = \lambda_{ij\text{max}} \quad (6.28) \]
\[\lambda_{ij\text{max}} = \lambda_{ij\text{max}} = 0 \quad (6.29) \]

を付与する（横断条件については付録を参照）。

数値計算では、
①ある \(a \) と \(\beta \) の初期値の組を与える。
②適当な \(\lambda_{ij0} \) と \(X_i0 \) を与え、\(N_{ij0} \), \(\lambda_{ij0} \), \(X_i0 \) を \(t = 0 \rightarrow t = T \) の方向に計算する。
③ \(j = j_{\text{max}} \) と \(t = t_{\text{max}} \) のときに \(\lambda_{ij\text{max, max}} = 0 \) と定め、
\[\lambda_{ij\text{max, max}} = 0 \] が同時に満たされていたいれば \(\lambda_{ij0} \) と \(\lambda_{ij0} \) を次に；②の計算を繰り返す。③の最大 \(\lambda_{ij\text{max}} = 0 \) を満たす \(\lambda_{ij0} \) と \(\lambda_{ij0} \) がみつかったら、その際の \((X_i) \) の解を \(\alpha \) と \(\beta \) の値を最大とする \(\alpha \) と \(\beta \) の組を非線形最適化手法によって求める。

したがって、③の計算においては、反復計算を通じて \((X_i^*) \) を求める必要がある。その際、各反復ごとの \((X_i) \) の更新にあたってステップ幅に適当な制約を設けることにより、\((X_i) \) を振動させずに一定の値に収束させるよう、工夫する必要がある。*20

6.3.2 適用データ

適用データは前節と同様である。自然体数の実数

\[N_{ij0} = 0.20 \times 365 \text{kg, 期引率} \delta = 0.00 \text{とした。} \]

*20 前節では生活にわたる漁獲努力の配分の検討を行ったため、積分の終了は \(T \)（寿命もしくは生産的漁獲終了時；6.1式）としたが、ここでは漁獲努力の配分は漁期内での検討となるため、積分の終了は \(t_{\text{max}} \)（一年の終了日）とする。
目的関数には、第5章で検討したB.イセニビの漁獲金額と操業経費Cを考慮した場合（γ = 0, ξ = 0; 価格は漁獲量と独立）を例示的に取り上げ、最適な漁獲選択曲線と漁獲努力の最適化分配について、τの値を変化させてながら検討した。最適な漁獲選択曲線においては、(1)パラメータαとβの両方が自由に設定できる場合（ただし、
α = 1000の上限を設ける）、(2)パラメータαは第4章で求めた現実の値（α = 13.01）に固定し、パラメータβのみを自由に設定する場合（すなわち、50%選択体長は自由に設定できるが、選択曲線の傾きに制約がある場合）の2通りを仮定し、それぞれについて検討を行った。

6.3.3 解析結果
解析結果の概要を图6-9～图6-17に示す。任意のτについて最適な漁獲選択曲線と漁獲努力の最適化配分を求めることができた。

漁獲選択曲線に関して、(1)の、パラメータαとβの両方が自由に設定できる場合には、あるサイズごとに漁獲される個体は全て漁獲せず、それを含むサイズ間の個体だけを選択的に漁獲するような、“鋭い”漁獲選択曲線が最適であることが解る（图6-9）。調査による漁獲を前提とする場合は調査目的の大きさや系統の傾向だけでは“選択の鋭さ”を大きく改善することに限界があると考えられるため、これを達成するためには別の漁獲方法（例えばカゴ漁など）の導入も検討する必要がある。③の、αの値を固定してβのみを変化させる場合（图6-10）は50％選択体長付近での傾きが現実での“鋭さ”を前提としているため、最適な漁獲選択曲線は主として50％選択体長の調査に、すなわち調査対象の調査領などによって選択できる可能性が高い。一方、ここでは解析は行われなかったが、αとβともに既知の一定値に固定する場合は、現状の調査を前提として漁獲努力の最適化配分のみを考える問題となる。

いずれのケースでもτの値が大きくなるほど、最適な選択曲線による50％選択体長は大きくなり、イセニビの成長後における漁獲が最適化された。すなわち、産卵期1万粒あたりの資源の評価金額γが低い場合はイセニビが直接得られる加積的に漁獲金額がより高く、逆に加入あたり産卵数は少ない。漁獲選択曲線の傾きが自由に設定できる場合はτ = 6～18（円/万粒）の間でYPR, % SPRの値が大きく変化した。漁獲選択曲線の傾きに制約がある場合はYPR, % SPRのいずれの変化も含めなかった。τ = 0での% SPRの値は前者は41.2%, 後者は37.4%である。τの値を適切な値に設定することにより、資源の維持に必要な産卵数を確保しながら加入あたり漁獲金額を最大にするような最適漁獲方策を決定することが可能である。

実験のイセニビ漁獲漁業で推定された漁獲選択曲線（第4章）の50％選択体長（55.5mm）は、τ = 0として求められた最適な漁獲選択曲線の50％選択体長（漁獲

25 ①のXの計算で反対計算を行う必要があること、②において目的関数値を最大とするαとβの組を非線形最適化手法によって求めることを必要があること、③の理由により、数値の数値計算ではボンテリヤンの最大原理による解析の大きさの判断である「解析の近似性」を十分活かすことができない。6.2.3式に示される目的関数を最大化する（X），αとβの組をはじめから直接的に非線形最適化手法によって求める方が好ましい。この問題については計算が速くなる。
選択曲線の傾きが自由に設定できる場合で66.5mm、制約がある場合で64.5mm）よりも明らかに小さい。現実の漁業では、産卵卵の経済的評価金額の大小にかかわらず、最適な漁獲方策に比べて相当多くの小型個体を漁獲していることになる。漁具の見直しを通じて漁獲選択体長を引き上げ、小型個体の漁獲を極力回避する必要がある。加えて、現実における拡大出漁労数は1990年以降の5年間の実績値で2,593隻・/年〜3,447隻・/年（平均2,985隻・/年）であり、最適漁獲方策における1,440隻・/年年の倍程度となっている。出漁日数の削減による漁獲労数の低減も併せて進める必要がある。

なお、本節の解析では現状を基準、漁獲労数の上限（最大出漁労数）としてX_max =30隻・/年を標準とした。図9（図5－7）と同様にX_maxを変化させた場合の検討も可能である。X_maxの値をより高く設定すれば、より価値の高い魚を集中に漁獲を行うのが最適な配分となり、X_maxの値がより小さい場合にはより長期にわたって出漁するのが最適となる。

図6－9．複数鰹師の同時漁獲モデルで求められた最適な漁獲選択曲線。①シグモイド型曲線のパラメータαとβのいずれもが自由に設定できる場合の推定結果、立ち上がりの“鋭い”選択曲線が最適となる。卵の経済的評価金額が大きくなると50％選択体長が大きくなる。αが40以上になると大きな変化がなくなるため、α =40（円／万粒）までの範囲を表示した。

図6－10．複数鰹師の同時漁獲モデルで求められた最適な漁獲選択曲線。①シグモイド型曲線のパラメータαの値を固定してβのみを変化させる場合、すなわち、曲線の傾きに制約がある場合の推定結果。αは第4章で求めた値（α = 13:01）を使用した。卵の経済的評価金額が大きくなると50％選択体長の大きな選択曲線が最適となる。βが40以上になると大きな変化がなくなるため、β =40（円／万粒）までの範囲を表示した。
図6-11. 複数雌雄の同時漁獲モデルで求められた漁獲努力の最適配分と、それによって得られる雌雄別齢別の1隻あたり漁獲損失、漁獲選択曲線の傾きが自由に設定でき、卵の経済的評価値をτ = 0とした場合の推定結果。
図6-12. 雌雄群の同時漁獲モデルで求められた漁獲努力の最適配分と、それによって得られる雌雄別別別の1隻あたり漁獲金額。漁獲選択曲線の傾きが自由に設定でき、卵の経済的評価金額をτ=18 (円/万粒)とした場合の推定結果。
図6-13. 複数鰤群の同時漁獲モデルで求められた漁獲努力の最適配分と、それによって得られる雌雄別種別の1隻あたり漁獲金額。漁獲選択効用の傾きに制約を設け（\(\alpha = 13.01 \)）、操の経済的評価金額を \(r = 0 \)とした場合の推定結果。
図6-14は6-14の複数年代の同時選択モデルで求められた漁獲努力の最適配分を示す。それを用いて得られる結果を示す。
図6-15．複数鰤の同時漁獲モデルにおいてτの値を変化させた時の、各漁獲年齢別の雌雄別別の年間漁獲率（年間漁獲尾数／初期資源尾数×100％）の一覧．漁獲選択曲線の傾きが自由に設定できる場合についての推定結果である．τが40以上になると大きな変化がなくなるため，$\tau=40$（円／万粒）までの範囲を表示した．

図6-16．複数鰤の同時漁獲モデルにおいてτの値を変化させた時の、各漁獲年齢別の雌雄別別の年間漁獲率（年間漁獲尾数／初期資源尾数×100％）の一覧．漁獲選択曲線の傾きに制約がある場合（$a=13.02$）についての推定結果である．τが40以上になると大きな変化がなくなるため，$\tau=40$（円／万粒）までの範囲を表示した．

6.4 論 議

産出卵の経済的評価値の概念を導入することによって，再生産に関与する親の価値と，漁獲金額や漁家所得などの経済的影響額との間の直接的な比較検討ができた。従来別々に行われていた加入あたり漁獲金額の検討に基づく「加入資源の有用効用」と，再生産関係に基礎を置く「資源の持続的管理」の両者を結びついた総合的な論議の展開が可能である。

卵は直接的な売買の対象となるため，これまで経済評価の対象としては扱われてこなかった。本来は市場での直接の取引対象とされないものでも経済評価を与えることにより，市場経済原理の仕組みによりとりこむことが可能である。例えば環境に対する負荷の高い経済活動についてはそれに見合った課税を行うことで，社会全体の持続的な発展に与える負の影響をコストとして市場原理に組み込むことができる。逆に，社会全体にとっては価値が高くなっても市場の競争原理の中では存在しないよう

単一年齢群の最適漁獲方策の検討（6.2節）では、特定の群の選択的な漁獲が可能として論識を展開した。対象魚の1尾あたりの価値が群ともに分散増加し、資源価格の減少を考慮した価値（漁獲量を目的関数とする場合は各時点でのバイオマス）が単調性とする場合は、漁獲開始群数のすべての群を大きく効果をもって漁獲する方策が最適となるため、漁期の進行に伴せて使用漁具を交換し漁獲開始群を調節すれば、特定の群の選択的な漁獲を行う場合と実質的に同等な漁獲が実現できる。ただし、イセヒエビでは「特大」の単価が「中」よりも低いので、平均体重量が350gを超えると1尾あたりの価値が一時的に低下する（図6.1）。また、漁期の進行に伴う価格の推移が「特大」から「中」では若干異なるため、ときに離れて1月から4月にかけて7群以上の個体の価格が6群以下の個体の価格よりも低くなる「逆漁現象」がみられる。したがって最適漁獲方策も、ある群の群をすべて漁獲という方策ではなくな（例えば図6.6を参照）、操業時期に伴って漁具を交換するだけでは完全な選択的漁獲と高効果を実現することが困難となる。時期ごとに種類の異なる漁具を用意することは経費の上昇も招く。現実的で妥当な漁獲方策は、6.3節で展開したような漁獲努力の漁期内打分と漁獲選択曲線の調節の組合せである。ただし、漁期中を通して同一の漁獲選択曲線を仮定するのではなく、ある一定期間を含む魚の選択的な漁獲選択曲線を適用する方策であるかもしれない場合によっては有効である。

本章ではrの値を変化させる事によって、最適漁獲方策の感受性に関する検討を行った。rは本来、初期消耗も漁獲生産量の見積もりなど、予測状態の達成のための各種の検討をもとに一義的に決定されるべき制約条件である。しかし、現実の水産資源では平衡状態を達成する条件は容易には決定できない。その場合、rの値を仮定的与えて最適漁獲方策を計算し、その結果漁獲を増減させるながら感受性の検討を行うことによって、現実の漁獲で改善すべき点の方向性を示す考え方がある。

rの値を変化させると、各最適漁獲方策で得られるYPRと% SPRは連続的に変化し、一方の値が高くなると他方の値が低くなるというトレードオフの関係がみられる（図6－8、図6－17）。Mac（1994）は漁獲加入年齢が成熟年齢に等しく、SPRが加入あたり平均バインマス（BPR：Biomass per Recruit）に等しい場合、YPRとSPRの間の次式の関係が導かれる（1）を示した。

$$YPR=F\times SPR$$

ここで、

$$F=\frac{YPR}{SPR}$$

となるから、Fを介してでYPRとSPRはトレードオフの関係にあることがわかる。このことから、rの値の変化に伴うYPRと% SPRのトレードオフの関係の直感的な理解が可能である。

本章で用いたパラメータは誤差を含んでいる。自然死亡係数Mについては明確な推定値が得られなかったため、漁獲力におけるイセエビ類の種推定値（4.5節）を参考に、推定的な値（M=0.24/年）による解析を行った。

Mの値が異なれば当然、望ましい管理は異なるだろう。真のMの値が本章で用いた値より小さい場合は、最適漁獲方策は若齢群の漁獲をさらに控える方向に傾き、逆に、真のMの値が大きい場合は若齢群をより多く漁獲する方策が最適であるだろう。また、第2章で論識したように図で用いた成長曲線は、高齢群の成長に関して推定精度は低いと考えられる。高齢群の真の生体がより大きな場合は、最適漁獲方策では若齢群の漁獲をより控えるが必要がある。

本章では漁獲経済価値の評価は誰についてのみ行い、群の漁獲は資源の保全状態に影響を及ぼさないと仮定して解析を行った。しかし、群をより多く漁獲することによって漁場内の性比に極端な偏りが生じる場合は、群としての後裔成功回数が低下し受精率へ影響する可能性が考えられる。出口（1988）は水槽内のイセエビの交尾・産卵の観察を行い、雄エビよりも雌エビの方が大きい場合には交尾に成功することはほとんどないと報告している。
たがって交尾成功のためには雌よりも大きな雄個体が雄場内に十分に分布することが必要で、大型の雄に対する相対的な漁獲圧力の高まりは結果的に雌の受精数の低下につながる可能性を否定できない。一方で出囲（1988）は、交尾は週の中の1～4回行われ、また、それぞれの回での交尾相手は特定の個体に限定されておらず、時に相手を替えることができる指摘している。このことは雌の個体数が減少しても1尾の雌が複数の雄と交尾できるため、雄の個体数の低下は資源の平衡状態にはあまり影響しない可能性も示唆する。3尾以上の大型鰤について雄と鰤の資源尾数比を試算すると、現在では1：0.91（雄：雌）であるのに対して、第3節で求められた最適漁獲効用では2 = 0（円/万粒）の場合で2 = 1.21（漁獲選択曲線の傾きが自由に設定できる場合）、2 = 1.44（円/万粒）となり、方策によっては性比に偏りが生じることになる。イセエビの交尾・産卵生態に関するより詳細な知見をもとに、今後十分な検討を行う必要がある。

本章で導出した、最大原理などの最適化手法の応用による加入資源の管理モデル（ここでは「最適化型」）を称す；表5-1を参照）と従来からの加入あたり漁獲金額に基づく加入資源の管理モデル（「シミュレーション型」と称す；マルクモデル（汎用モデル）、Diorap（KAFS モデル）などがある）の特徴を比較し、表6-1に整理した。最適化型では何ら仮定を設けなくても年齢別の漁獲方策と漁期内の漁獲方策を連続した視点で検討できるが、シミュレーション型では漁期内の漁獲方策の動的な検討は困難で、また、年齢別の漁獲方策の検討にくも多くの仮定を設ける必要がある。このために結果は仮定に大

<table>
<thead>
<tr>
<th></th>
<th>最適化型</th>
<th>シミュレーション型</th>
</tr>
</thead>
<tbody>
<tr>
<td>最適化</td>
<td>行う</td>
<td>行わない</td>
</tr>
<tr>
<td>年齢別の漁獲方策</td>
<td>仮定を設けずに検討可能</td>
<td>仮定を設けて検討</td>
</tr>
<tr>
<td>漁期内の漁獲方策</td>
<td>仮定を設けずに検討可能</td>
<td>仮定を設けて検討</td>
</tr>
<tr>
<td>モデルにおける仮定</td>
<td>必要最小限</td>
<td>多い</td>
</tr>
<tr>
<td>解析過程の意味付け</td>
<td>可能（最大原理）</td>
<td>できない</td>
</tr>
<tr>
<td>結果の表示</td>
<td>点で表示</td>
<td>面（または線）で表示</td>
</tr>
<tr>
<td>最適方策付近の「適当方策」の定義</td>
<td>困難</td>
<td>容易</td>
</tr>
<tr>
<td>独立した漁期間の「寄与度」の比較</td>
<td>困難</td>
<td>容易</td>
</tr>
</tbody>
</table>

表5-1、最大原理などの最適化手法の応用による加入資源の管理モデル（最適化型）と加入あたり漁獲金額などに基づく加入資源の管理モデル（シミュレーション型）の比較表

()
第7章 総合討論

7.1 イセエビの資源評価

第3章では漁獲量努力量データの解析によってイセエビの資源評価を行った。モデルの構築にあたっては、データの発生過程（漁獲過程）をできるだけ忠実にモデルに反映させることに留意し、AICによって妥当性の検討を行った。具体例として適用した三重県沖外海域のイセエビ漁獲業データは、基礎的な調査の結果入手した相当多くの情報を含むデータである。このためかなり複雑なモデルに対しても適用が可能で、妥当性が高いと判断された。

必要なデータが入手できれば他地区でも同様な解析ができるが、データの質や量が異なれば、妥当なモデルの判定結果は異なると予想される。地区によっては第2章で解析したような高度的な体験観測データの入手が困難な場合も多い。別の海域で推定された成長曲線や性比を用い、比較的容易に入手できる鰤稚別の漁獲量などのデータを中心に解析が行えるような、より簡便で適用範囲の広いモデルの開発が望まれる。研究者全般への普及を含めた汎用性の高いソフトウェアの開発も重要であろう。

7.2 イセエビの選挙管理

7.2.1 加入資源の有効利用と再生産管理

水産資源の再利用性、漁業の選択変動などの条件を考慮し、再生産の概念を考慮しない管理法には限界がある。加入一定一定の前提のもとに、加入量や管理方策の初期条件を与え、将来の資源状態と漁獲を予想し、資源選択を決定するためのYPR（Yield per Recruit）型の資源管理は、実際的に有効な適用範囲は一部に限定される。

第6章で行ったように産出卵の数値評価の概念を導入すれば、地域単位の管理（加入資源の有効利用）と系統全体での管理（再生産管理を）を、評価基準を介して結びつけることができる。加入資源の有効利用は、地域単位での漁業者の所得向上と密接に結びついており、管理対象資源の範囲が漁業者の行動範囲とおおよそ一致する場合が多いため、漁業者全体の行動範囲を超える範囲の資源管理対象となる。このような場合、資源の再生産管理は系統全体を対象とし、漁業者行動範囲を広げる範囲の資源管理対象となる。このような場合、管理の実行者と受益者が一致する保証がなされため、個々の漁業者は全体の（将来の）利益を考えて行動するより、個々の目的の利益を求めて当面の漁獲に専念することとなる。産出卵の経済的評価値を導入すれば全体の再生産管理を漁業者ヒートへとりこめ形で評価できるようになるため、各地域での管理が行われた自然の結果として系統全体での再生産管理が達成されることになる。図7-1に概念的なモデル図を示した。

（6.1）式や（6.23）式を目的関数として現在の漁獲管理に適用する場合、右辺の漁業者所得に関する項での対象資源の範囲は、加入後の補正を考慮した任意の範囲（例えば設定の強い資源については当地の所得の所与の加入資源）で良いが、漁業に関する項での対象資源の範囲は再生産の及ぶ全範囲、すなわち系統の範囲を一致して
いる必要がある。このため、資源の平衡状態の維持を制約条件として付加した加入資源の有効利用においては、厳密には系全体を管理対象に選択する必要がある。しかし前述のように、イセエビ計画観では地区ごとに別個の管理が定着してきた経緯があるため、全体で同一の基準による管理を実施することは実際に困難である。当面の暫定的な措置として、地先ごとに目標とする産卵数E*をそれぞれ設定する（すなわち、rを地先別に設定すること）によって(6.1)式や(6.23)式を基にした加入資源の管理を地先別に行い、全体での合計産卵数を勘案しながら段階的に望ましい方向へ近づけていくという手法が有効である。第6章での方法を用いれば、目標卵数を暫定的にでも設定すれば対応する最適な漁獲スケジュール（戦略）が具体的に提示できるため、従来の余剰生産量モデルなどによるアプローチよりも現実的な対応が可能である。

図7-1. 地先ごとの加入資源管理と系全体での再生産管理の関係（模式図）

近年、生物学的管理基準（Biological Reference Points）のひとつとして、加入あたり産卵量（Spawning Per Recruit；SPR, Spawning Stock Biomass per Recruit; SSBR）や産卵ポテンシャル（Spawning Potential；SP）の概念が多くの魚種で重視されるようになっ

【図7-1】再生産管理

加入資源の
有効利用

地先A

加入資源の
有効利用

地先B

加入資源の
有効利用

地先C

乱獲を回避するために最低限必要なSPRの閾値（補償
%SPR）について、Mace and Sissenwine（1993）は27種
91資源のデータで検討した結果、補償%SPRは平均で20
%弱（18.7%）、8割のケースで30%以下であったとし、生
活史の不詳な種では保守的な基準として、まずは補償
%SPR=30%を採用することを勧めた。Goodyear（1993）
は対象とする資源によってほど強い寄生依存性があ
る（＝回復力が高い）場合を除いて%SPRが20%以下
になるのは避けるべきだとした。Clark（1991）は管理
基準として35%SPRを採用すれば幅広い再生産関係に
おいて高い生産性が達成できることを導いた。実際、ア
メリカの漁業管理委員会で乱獲を回避するための戦略と
して採用されている基準値は多くの魚種で%SPR=20
～35%の範囲に入るという（Mace and Sissenwine 1993）。

第4章で推定された漁獲率の値をもとに概算すると、現
状の和田におけるイセエビ計画漁業の%SPRは15%程
度と見積もり、明らかに漁獲過剩であると考えられた。
仮に、漁獲選択曲線と漁期内での漁獲能力の配置パート
ンは現実のままに固定し、努力量水準の一定削減によって
%SPRの調整を行うとすると、%SPR=30%の達成のためには現在の努力量の38%水準、%SPR=40%の達成のためには同24%水準まで削減する必要があると試算された。
最適漁獲戦略を導入すると、卵の経済評価が行われないケース（r=0）でも%SPR=37.4%（漁獲選択曲線の傾きに制約がある場合）と41.2%（傾きが自由の場合）となり、相当の改善が予想される（第6章）。

自然死亡係数Mの値が異なる場合や、加入後に密度
依存死亡や密度依存成長のある場合は%SPRの設定値が
異なってくるため、現実への適用においてはこれらの資
源特性の精密が重要である。第4章で展開した複数年級
群解析では、自然死亡係数Mを未知として他のパラメー
タと同時推定すると全体の推定結果が不安定化した。自
然死亡係数の推定（資料 1794）にはこれまでBeverton-
Holtの方法、土井の方法、Paulyの方法、田内-田中
の方法、Withrigの方法、Rikhter-Efanozの方法、Palohelmeの方法などが提案されてきたが、いずれの
方法にも一長一短がある。近年、数理生態学分野におけ
る成果を応用し、生活史戦略の観点に基づいて自然死亡
係数などの生活史パラメータの理論的推定が試みられて
いる（Myers and Doyle 1983, Kitahara et al. 1987,
関ら 1988, Hiyama et al. 1988, Chen and Watanabe
イセエビにおいても、このように生活史戦略理論に
基づく推定は、資源管理に必要な生活史パラメータの推

—73—
定の基礎（原田 1992, 松山 1992）として有用であろう。

が求められる現在の状況において, 実現のかつ体系的な対応を可能とするものであり, 精力的な研究の進展が待たれる。

7.2.2 具体的方策

第6章で指摘した結果から, 現在のイセエビ制漁情報では, 出漁日数の削減などの年間の漁獲努力の低減と漁獲努力の漁期内最適配分を図るとともに, 渔具の見直しを通じて漁獲選択曲線を右へシフトさせ, 渔獲開始の引き上げを行うか計する必要があることが明らかになった。

法（例えば, 騒音の進行に応じて変化する税の導入につ
いてはClark 1985参照）と考えられる。

漁獲選択曲線のシフトについては, 網目の拡大や三枚
網から一枚網への変更などと調整が可能である（小池,
竹内 1985, 小池, 松田 1988, 三重県 1983**12 など）。 三重県（1993）**12 はイセエビ制漁の種類（一枚網, 三
枚網）と網目的大きさ（2 寸, 2 寸 3 分, 2 寸 8 分）の
異なる 6 種類の網を使用して和具地区で試験漁業を行い,
漁獲物の種組成と漁獲重量, 置網したイセエビの体長の
比較を行った。その結果, 三枚網では種やサイズによる
選択性が一枚網に比較して大きく, 漁獲物を含めた総漁獲
重量は一枚網のおよそ 2 倍であったと報告している。
一方, 一枚網では漁獲物の選択が少ないため, 漁獲物に
対するイセエビの漁獲重量比が三枚網よりも相対的に高
く, また, 網目が大きくなるに従って漁獲するイセエビの
平均体長も大きくなる傾向がみられたとした。同様に,
三重県南部島町阿部浦地区において行われた一枚網の網目
の異なる試験漁業（三重県 1997**14）でも, 大きな網目
の網は, 置網するイセエビが顕著に大型個体に偏っ
たことが報告されている。

漁獲開始年齢の引き上げを図る手段としては再放流サイ
ズの引き上げも有効であろう。しかし, 一旦漁獲された
個体は漁獲後の扱いによって多少とも措置を欠き, 再
放流を行っても適切な棲息場所に落ちつくまでは
害害に襲われる危険性が高くなる。したがって, 渔具の
見直しを通じて漁獲開始年齢の引き上げが可能な場合は,
再放流サイズの調整によって引き上げを図るよりも大き
な管理効果が期待される（Brown and Caputi 1986,
Waters and Huntsman 1986, Prager et al. 1987,
Gooyear 1993）。なお, 再放流個体のその後の生存率
推定については前節のCIR法が活用できる。

第6章で指摘された適切な漁獲選択曲線は, あるサイズ
以下内の個体は全く漁獲せず, それ以上のサイズの個体
だけを選択的に漁獲するような, “立ち上がりの鈍い” 渔
獲選択曲線で, 実現のためには配網以外の漁獲方法の導
入の検討も考えられる。外国でのイセエビ類の漁獲は
lobster pot と称するカゴ類のトラップや人工シェルター
で行うのが一般的で（Bowen 1980, Pollock 1986,
Baisre and Cruz 1994, Booth and Breen 1994, Briones
and Lozano 1994, Briones et al. 1994, Brown and
Fontes-Filho 1994, Hunt 1994, Munro 1994,
Pollock 1994, Polovina 1994）, 魚礁で漁獲を行う国
は日本やフランス（Cecimadi and Latrouite 1994）など
少数に過ぎない。多くのタイプの lobster pot にはescape
gap（あるいはescape vent, escape port, escape panel
と呼ばれる脱出口が備えられおり, そこから一定サイ
ズ以下の小型個体は抜け出ることができる（Stasko 1975,
Krouse 1978, Fogarty and Borden 1980, Krouse 1989,
Miller 1990）。同様なカゴ漁業は日本ではズワイかごや
ベニズワイかご, ケガニかごなどにみられ, 網目ごとの

31: 原田康志：再生産関係が不確定な状況での管理方策の評価について 平成7年度日本水産学会秋季大会講演要旨集, 1995, p.12.
イセエビの資源評価と漁業管理

同県南部漁区ではイセエビ漁業が許可されているという（宮崎県農政水産部水産課中部水産課改良普及課；私信）。イセエビの漁獲選択曲線の改善のためには, こ
のようなカゴによる漁獲の検討も有効であろう。

本論文での漁業管理の検討においては密度依存効果は
考慮していない。しかし現在には, イセエビには密度依
存性の成長変動が見られた（第 2 章, 図 2-4）。密度依存
的な成長変動, 成熟体長や抱卵数の変化, 死亡率の変化は
イセエビ類では数多く報告されている（Chittleborough
and Phillips 1975, Chittleborough 1976a, 1976b, Pollock
1987, Ford et al. 1988, Breen and Booth 1989, Polovina
連した強い密度依存性（餘ら 1989）がある場合は, 望
ましい管理は異なったものになると考えられる。漁業資
源への介入も密度依存性の成長変動や成熟状況の変化
がみられる場合は SPR の推定結果も異なるであろう。

Pollock (1993) は種エビ期の密度依存的な生殖や成長変
動, 成エビの成熟サイズの変化による生存率密度の変化
などをもとに, イセエビ類に対する漁獲が資源に与える
影響について考察を行った。漁獲による再生産量の変化
と加入資源量の変動, 密度効果による次世代再生産量の
変化などに相互に依存する過程を模式的に示し, イセ
エビ類の資源は補償機能に達する程度に漁獲圧力が高まっ
た場合は崩壊に向かうとした。密度依存過程は資源の再
生産・補償過程において重要な役割を果たすものであり,
日本海イセエビに関してもこの点について, より詳細な
研究を行う必要がある。

本論文では管理の導入の結果として市場価格が大幅に
変化することは考慮に入れなかった（ただし, 第 5 章で
は仮定的な例として価格関数を導入した場合について検
討した）。しかしこの導入の結果, 市場個体の漁獲
量が大幅に増加することが予想されるため, 各銘柄の価
格の推移のそのものが変化することもありうる。価格
関数を導入した資源管理がいくつかの漁業で検討されて
おり（山口ら 1992, Sylvia 1994 など), 今後はイセエ
ビの価格変動機構に関する詳細な検討を行い, その成果
を漁業管理に反映させることも重要な課題のひとつであ
る。

7.2.3 管理方策の導入と将来に向けて

三重県（1993）*33 は, イセエビ剥鬚漁業に関する数
種の資源管理方策について, 導入後の 10 年間に予想され
る漁獲量と漁獲規制の変化をシュミュレーションによって
試算した。漁獲開始前の引き上げや漁獲努力量の削減
を行うと 10 年後には現状より高水準で漁獲量・漁獲金額
は安定するが, 管理方策の導入直後の 1 〜 2 年目には急
激な漁獲量・漁獲金額の落ち込みが生じることを予測し
た。

本論文で導出した最適漁獲方策を現実の漁業に適用す
る場合にも一時的な漁獲の低下は予想されることであり,
それが望ましい漁業管理状態への移行の助けとなること
も十分考えられる。これを回避するためには, ①望まし
い管理方策を一気に導入するのではなく, 数年間にわたっ
て徐々に望ましい方策へと近づけていく方法, ②加入資
源の変動をモニタリングし, 加入量の多い年を契機に望
ましい管理を導入する方法（Tanaka 1996）, ③ 方法①
と②を組み合わせたもの, などが考えられる。

①については例えば, 出漁日数の削減によって終漁労
努力量の低下を図る際に, 望ましい日数へ数年間をかけて
徐々に削減していくことや, 網目の拡大によって漁獲
開始前の引き上げを図る際には, 高度の網を望ましいもの
に一斉に交換しないことなどが考えられる。三重県（1993）はこのよう段階的な移行により, 漁獲量や漁獲
金額の一時的な低下は大幅に改善され, 漁業現場に受け
入れられやすい導入が可能であることを示した。

②については, 加入量のモニタリングが可能であるこ
とを前提とする。第 4 章の複数年群解析では年ごとの
鰤群初期資源尾数の推定が可能であることを示した。現
状での漁獲対象の主群は 2 群体であるため, 前年の漁期
終了時での 1 群体の資源尾数の評価ができれば当年の漁況
が事前に, ある程度予測できることが期待される。木村・高齢
（1993）は, 千葉県での漁期の 5 月の CFUE（1 日 1
隻あたり漁獲量）は漁期の延べ漁の 8 月の CFUE と高い
相関があるため, 漁期前の漁獲量をもとに次の 8 月以降の
漁況を予測することが可能であるとした。このような
手法の適用によって, 加入量のモニタリングと漁獲量の
事前予測が可能である。

**32 武野善之：脱出機能を有したベニツイズイカが。 平成 6 年度日本水産学会秋学期会講演要旨集, 1994, p.8.

本論文では資源が平衡状態にあると仮定して望ましい漁業管理の検討を進めてきた。しかし、年々の加入資源量は一般に環境などの影響で大きく変動する。伏見 (1976) は、年7～10月における黒潮流脈の石塚群からの平均離岸距離と (n + 1) 年秋から (n + 2) 年春にかけての石塚群のイセエビ1群群漁獲量の間に負の相関を認め、黒潮流脈の変化によってブカルスの着底量が大きく左右されることが示された。今後は加入資源量の変動（不確定性）を前提として加入群の漁期前モニタリング調査や漁期中に収集された情報を活用する（Walters and Cellie 1988, Walters 1989, 原田 1995**31）ことによって、変動するイセエビ資質を対象とした効果的な管理について検討する必要がある（山川・松宮 1994）。

原田 (1995)**31 は、再生産関係が不確定な状況での管理方策の評価について数理的解析によって検討し、とくに管理効率を「最適な管理が行われた場合の何割の生産をあげられるか」で評価した。このようなアプローチによれば再生産関係の情報が少なく不明要素の多い状況下でも、広い範囲の再生産関係について「適当」（原田・松宮 1995）かつ安全な管理方策を決定することが可能である。

**31 千葉県水産試験場：昭和57・58年度大規模増殖場開発事業調査結果報告書（外房北部地区；イセエビ）、千葉県水産試験場、1984, 80pp。
**32 千葉県水産試験場：昭和59・60年度大規模増殖場開発事業調査結果報告書（外房北部地区；イセエビ）、千葉県水産試験場、1986, 58pp。
要約

イセエビの産卵場の調査において指針を示すことを目的に、三重県和田郡の産卵場を具体例に、資源評価手法と資源（漁業）特性値を精度、資源の有効利用と再生産管理のための最適漁獲方策を検討した。

1. 序章

一般生態と生活史、群系、再生産関係について既知見を整理し、漁業管理の基本的な考え方を論じた。群系や再生産関係が不明であり、漁業管理の状況も多様なため、地元ごとの加入資源の有効利用を主体に、加入あたり産卵量の概要を組み合わせて管理するのが妥当であるとの方向性を示した。

2. 体長組成データの解析による成長の推定

複合正規分布への分解に基づいて経時的な複数の体長組成データを一括して解析する手法を提示し、成長加成、組成の動物組成などを検討した。尤度は多項分布で表現した。成長式は Richards の式（Bertalanffy式、 Logistic式、Gompertz式を含む）を用い、成長の季節変動を導入した。標準偏差は発育により一定は一定のほか、発育に従う3通りの関数が選択できる。各群の出現率は、①何の制約もない、②ある時以上の群に欠損係数を導入、の2通りが既定できる。パラメータは未知として推定する場合と、既知として固定する場合に任意に選択でき、年による成長変動にも一括解析での対応が可能にように複数の値を採用できる。妥当性の判定は AICの大さいで行う。1990年から1995年までの各漁期（10月4月）の月、10月、11月、12月、3月、5月の雌雄別の頭胸甲組成データ（おおよそ6万尾）に関適用した。

複数データの一括解析により、妥当なモデルが見つかり、選択でき、安定した推定結果が得られた。成長の季節変動、標準偏差の変化、全減少係数の導入によって妥当性が高まった。年によって成長が異なり、密度従属的な成長が示唆された。各群毎の推定後甲殻の5年間の平均値は、雌では1個が45.0mm、2個が62.4mm、3個が74.1mm、雌では1個が42.3mm、2個が56.2mm、3個が64.7mm（いずれも10月1日時点で値、時モデルはブルルスから推定）であった。漁獲対象の主群は2群であった。漁区内の1群群の加入の進行状況と年変動に基づき、刺網漁具の漁獲選択性を検討した。

3. 拡張 Delury 法による資源評価

漁獲量努力量データの解析に用いられる Delury 法の拡張を行い、環境要因によって漁具率が変化する最適モデルを導出した。各種の統計モデルを導入し、妥当なモデルの検討と妥当性を評価した。

期ごとの既知の漁獲尾数と漁獲量努力量、推定すべき初期資源尾数と漁具率の数を用いて尤度（基本モデル）を表現した。漁獲量努力率を表すモデルとして、従来の一定型に加えて、水温や太陽月周期、波浪などで変化する、I〜IIの14通りのモデルを導入した。統計モデルには、①条件付き Poisson 分布の積、②条件付き二項分布の積、③ B の正規近似、④ 多項分布の正規近似、⑤ C にover-dispersion を考慮、⑥ D にover-dispersion を考慮、⑦条件付き平均分布の積、⑧ 条件付き二項正規分布の積、⑨ 条件付き負の二項分布の積、の9通りを導入した。

モデルの妥当性は AIC の大小で判断した。パラメータの推定は最尤法を用い、95%信頼区間を尤度比検定で計算した。1990年10月〜1991年4月漁期の、日別漁獲量努力量〜環境データに適用した。漁獲資源への完全加入群である2群以上を漁獲尾数として用いた。

漁獲量努力率が一定のモデルよりも、変化するモデルで妥当性が大幅に向上した。モデルIIが最も妥当と判断された。①水温が高く、②月相が新月前後で、③波浪が高、い、条件で漁獲量努力率が高く、各環境要因の変動に伴うイセエビの活性性の変化を反映していると考えられた。

統計モデルでは、負の二項分布モデル（1）が最も妥当であった。平均と分散が近似等しい単純ランダムモデル（A, B, C, D）では AIC が著しく大きくなり、実際の分散は相当大きいことが示唆された。このことは、集中分布とみなせるイセエビの分布生態を反映していると考えられた。統計モデルの相関によって推定値の信頼区間は大きくなった。負の二項分布モデルによる信頼区間は相当広かった。1991〜1992年漁期と1992〜1993年漁期を加えた3年間のデータを一括して解析した結果、信頼区間は実用に耐えうる程度にまで狭くなった。

4. 複数年齢群解析による資源評価

マルチコート解析と拡張 Delury 法の統計的扱いによる複数年齢群モデルを提示し、年齢別雌雄別資源尾数、漁獲率、漁獲選択曲線を同時推定した。従来型 VPA の "separability の仮定 " を一般化したモデルに相当する。

i年1日目に雄群の雌雄（雌：l = 0、雄：l = 1）の漁
獲係数 \(F_{\text{imp}} \) を次式の積に分解して基本漁獲方程式に導入し、最尤法でパラメータ推定した。

\[
F_{\text{imp}} = \left[\frac{\text{漁具能率}}{\text{サイズ (}L_{\text{imp}}\text{) } \times \text{[労力\(\frac{1}{\text{単位}}\)}]}
\]

尤度は負の二項分布の積で表した。漁具能率は前章のモデルIIを、漁獲選択曲線をシグモイド型曲線を仮定した。各年齢群の資源尾数には計算上の関係と1年齢の性比を制約として導入した。自然死亡係数 \(M \) は（1）未知として他のパラメータと同時推定する、（2）既知として与える場合を設定した。1990年10月から1995年4月までの5年間の相対漁獲量－努力量－環境データに適用した。各年間漁獲尾数は6.5万尾～11.8万尾（平均9.1万尾）で、延べ操業船隻数は2,583隻・日～3,447隻・日（平均2,985隻・日）であった。

環境による漁具能率の変化や成長変動の漁獲選択率の変化を反映した自然な推定が行えた。各群の初期資源尾数が推定され、別離係数の群ごとに漁獲、自然死亡、翌年の成長に最も状況に明示された。年間漁獲率は1歳群では16.9～27.2%（雄）と9.9～21.1%（雌）、2歳群では63.6～74.4%（雄）と53.4～66.2%（雌）、3歳以上の群では66.7～79.1%（雄）と64.2～76.8%（雌）であった。推定された漁獲選択曲線が入力データ長を頭胸甲長40mm前後で始め、50～60mmで選択率が高まった。

\(M \) は未知として同時に推定する（1）と、現実にはあり得ない値（\(M = 0 \)）を収束した。\(M \) を既知として与える（2）と初期資源尾数は\(M \) の値に伴い増大したが、漁具能率と漁獲選択曲線においては安定した結果が得られた。従来のよう漁獲係数が“年齢固有係数”と“年齢固有の係数”で分離するだけでは推定誤差が大きい。利用可能な情報と未知パラメータの違いによって柔軟なモデル選定が可能である。

5. 漁獲努力の漁期内最適分配合に基づく漁業管理

所与の加入資源の有効利用を目的に、漁獲努力の漁期内最適分配合を検討した。初期資源尾数が既知の値にした資源を考えると、漁具能率の変化を考慮し、漁獲努力の任意の分配合もしくは漁獲量を計算できる。価格の推計、操業経費、漁獲物や漁具漬業による収入を考慮した漁業所得を含んだ漁獲努力の漁期内最適配合をポリトリーを最大値で求める。漁獲努力の漁期内最適配合をポリトリーを最大値で求める。漁期の利用により一定数以上の獲残し尾数を確保し、1日の漁獲努力には上限（出漁30隻）を設定する。考慮する要因の目的関数が異なる、6通りの解析を行った。乗数漬業
7. 総合討論

イセエビの資源評価と望ましい漁業管理について展望した。資源評価については本論文で展開した手法に加えて、CIR（Change in Ratio）法などの簡便な評価手法の導入と普及が重要であることを論じた。望ましい漁業管理については、加入資源の有効利用と再生産管理の関係、SPRの概念や生活史パラメータの利用の重要性について論じ、具体的な管理方策や導入戦略についても考察した。最後に、加入資源の変動を前提とした管理およびベイズ型の意思決定による管理について論じ、将来展望した。
謝辞

本研究をとりまとめにあたり、終始温かく励ましてくださるとともに懇切な御指導と御校閲を賜った東京大学海洋研究所の松宮義晴 教授に深く感謝申し上げます。また同じく御校閲を賜った清水 誠 東京大学名誉教授、同大学海洋研究所の沖山宗雄 教授、および杉本隆成 教授、ならびに同大学大学院農学研究科の谷内 達 教授に感謝申し上げます。

この研究は三重県水産技術センターの小泉 勝 正経括研究员、西村守夫 主幹研究员をはじめとする同センターの職員の方々の長年にわたる温かい励ましと御協力によるところが大きかった。和具漁業協同組合の故 藤和大典 前組合長、石井 弘 参事をはじめ、組合員の職員の方々ならびに漁業者の方々には調査にあたって甚大なる御協力をいただいた。三重県栽培漁業センターの方々ならびに南勢志摩町水産事務所水産部管理員室の方々、志摩町水産農林課の方々には調査に多大なる御協力をいただいた。これらの方々に厚く御礼申し上げます。

東京水産大学名誉教授の野中 忠 博士、同大学水産学部の北原 武 教授、同大学北原修一 助教授、東京大学海洋学部の大西修平 博士、東京大学海洋学部の岸野 洋久 助教授、同大学海洋研究所の松田裕之 助教授、長崎大学水産学部の山内 清 助教授、水産庁水産研究所の赤嶋達郎 博士、遠洋水産研究所の平松彦 博士には論文作成にあたって有益な御助言をいただいた。三重大学生物資源学部の白木原国雄 教授および原田泰志 助教授には文献の入手等にご便宜をはかっていただいたとともに、貴重な御助言をいただいた。豊橋技術科学大学建設工学系の小出水規行 博士、東京大学海洋研究所の森山 彰 正助教授、勝川隆男 氏には文献の入手や内容の吟味に関してご便宜いただいた。千葉大学地理学部のChristopher Paul Norman 博士には英文校閲を賜った。以上の方々に厚く御礼申し上げます。
文献

Dawe, E. G., J. M. Hoenig, and X. Xu: Change-in-

Frederick, S. W. and R. M. Peterman: Choosing

平山信夫, 山田作太郎, 横池 孿, 山田隆一: Delury法の修正とアワビ捕獲漁業への応用. *J. Tokyo Univ. Fish.*, 76, 7-17 (1999).

井上正昭: イセエビのフィロソマ幼生の飼育に関する基礎的研究. 神奈川県水産試験場論文集 第1集, 神奈川水試, 三浦, 神奈川, 1981, 91pp..

久保伊津男：イセエビ Panulirus japonicus (v. Siebold) の漁況. II. 降水量との関係に就いて. 日水誌, 8, 287-291 (1940).

久保伊津男、石渡直典：イセエビの活動性と水中放射照度との関係について. 日水誌, 30, 884-888 (1964).

漂 伸昭：自然死亡、「資源生物論」（西脇昌治編）, 東京大学出版会, 東京, 1974, pp. 72-82.

丸山英武：イセエビ漁の漁獲量と予測について. 東海水研報, 45, 81-95 (1966).

丸山英武、平井光治：イセエビの漁獲量の変動・移動及び禁漁区設定の効果について. 東海水研報, 38, 99-123 (1964).

増田栄良：年齢形質としてのイセエビの第1触角鞭状部について. 日水誌, 19, 1007-1011 (1954)
イセエビの資源評価と漁獲管理

松田裕之：漁はいつ、何歳から獲るべきか？＝持続可能な漁業の理論＝. 海洋と生物, 18, 120-125 (1996).

松宮義晴：水産資源管理概論，水産資源保育協会, 東京, 1996c, 77pp..

松宮義晴，真子：動植物群による年令構成の推定。「200カカリ水産内漁業資源調査」, 漁業資源解析のための電子計算機プログラム集, 水産庁, 東京, 1978, pp. 87-91.

水口義憲：模型または理論のもつ意味とその現状における点検。「増殖技術の基礎と理論－その発展の系譜として」(日本水産学会編), 水産学シリーズ 23, 恒星社厚生閣, 東京, 1978a, pp. 7-19.

Mogi, M. and N. Yamamura: Estimation of the attraction range of a human bait for *Aedes albopictus* (Diptera, Culicidae) adults and its

野中克： 伏見浩, 彭山佳之, 佐々木正： イセエビ属プエルスの採集についての二・三. 靜岡水試研報, 14, 43-52 (1980).

野中克： 伏見浩, 彭山佳之, 佐々木正： イセエビの増殖, 特に浅漁場体漁, 禁漁区の設置, 及び輪採による効果事例とその効果見積りについて, 水産増殖資料 No. 6, 東大農
イセエビの資源評価と漁業管理

学部水産学科増殖学研究室，東京，1957，21pp。

野中 清・大島泰雄：三重県鈴鹿における輸出によるイセエビの生産効果について，水産増殖資料 No. 14，東大農学部水産学科増殖学研究室，東京，1958，13pp。

野中 清，若林カルロス：本邦南西海域における1970年夏のphykosomaの分布について，静岡水試研報，6，15-18，(1973)。

大西修平，松宮義晴，原田泰志：ペイズ型コホートモデルの水産資源解析への応用。三重大学水産資源紀要，9，49-53 (1993)。

大島泰雄：イセエビの養殖に就いて。養殖研究，5，75-83 (1935)。

大島泰雄：イセエビの生態に関するニ，三の点，水産学会報，8，231-238 (1941)。

大島泰雄：イセエビ属のフィロゾーマについて，水産学会報，9，36-44，(1942)。

大島泰雄：イセエビの変態期間と年齢に関する一考察，日水誌，13，210-212 (1948)。

大島泰雄：浅海養殖事業－その生産効果－，海文誌，東京，1962，133pp。

大島泰雄：イセエビ資源の培育に関する考え方，水産土木，12，1-3 (1976)。

大島泰雄，井上正昭，小津勇郎，高橋文実：イセエビの育養について，水産増殖，7，11-24 (1960)。

大富 清・清水 誠：東京湾における加入完了後のシャコの成長および寿命について，日水誌，54，1935-1940 (1988)。

大富 清・清水 誠：東京湾産シャコの加入完了前の理論成長および成長パラメータの推定，水産海洋研究，58，21-27 (1994)。

Pauly, D. and N. David: ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforschung, 28, 205-211 (1981)。

Ritz, D. A.: Factors affecting the distribution of

佐藤貞美, 筒井英二: 「漁業管理」（現代の水産学）（日本水産学会出版委員会編）. 水産学シリーズ 100, 恒星社厚生閣, 東京, 1994, pp. 56-64.

Sparre, P.: A method for the estimation of growth, mortality and gear selection/recruitment parameters from length-frequency samples weighted by catch per effort, in "Length Based Methods in Fisheries

川野 卓, 松宮義晴: 鉛柄別捕獲量から年度組成を推定, 「種苗放出効果に関する計算ツール集」, 太平洋中ブロック, 东京, 1993, pp. 86-90.

付録．横断条件が（6.28）式と（6.29）式で与えられることの証明

（6.23）式と（6.24）式をそれぞれ,

\[\phi = \int_{0}^{\infty} f(X_{t}, N_{it}) dt \] (A.1)

\[\frac{dN_{it}}{dt} = g(X_{t}, N_{it}) \] (A.2)

と表す。 （A.2）の制約条件の下で（A.1）を最大化する問題は、ラグランジェの未定乗数法より,

\[I = \int_{0}^{\infty} \left[f(X_{t}, N_{it}) + \sum_{i=0}^{\infty} \lambda_{i} \left(g(X_{t}, N_{it}) - \frac{dN_{it}}{dt} \right) \right] dt \] (A.3)

の最大化問題に置き換えられる。

右辺第三項を部分積分し、（6.25）式を代入して整理すると,

\[I = \int_{0}^{\infty} \left(H + \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{d\lambda_{ij}N_{ij}}{dt} \right) dt - \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \left[\lambda_{ij}N_{ij} \right]_{0}^{\infty} \] (A.4)

となる。

ここで、（6.22）式の制約条件のもとで（6.28）式および（6.29）式的条件を導入すれば

\[\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \left[\lambda_{ij}N_{ij} \right]_{0}^{\infty} = \sum_{i=0}^{\infty} \lambda_{ij}N_{ij0} = \text{定数} \] (A.5)

となるから、（A.4）式的変分は

\[\delta I = \int_{0}^{\infty} \left(\frac{\delta H}{\delta X} \delta X + \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \left(\frac{\delta H}{\delta N_{ij}} \delta N_{ij} + \frac{d\lambda}{dt} \delta N \right) \right) dt \] (A.6)

となる。 \(I \) が最大となるためには任意の \(\delta X \) および \(\delta N \) について \(\delta I = 0 \) が成立しなければならないから,

\[\frac{\delta H}{\delta X} = 0 \] (A.7)

かつ

\[\frac{d\lambda}{dt} = -\frac{\delta H}{\delta N} \] (A.8)

でなければならない。

以上により、（6.28）式および（6.29）式を横断条件として付与すれば、（6.20）式、（6.22）式、（6.27）式の条件のもとで（6.25）式のハミルトニアン \(H \) を各 \(t \) で最大化することにより、（6.23）式の目的関数が最大化できることが証明された。