資 料

三重県における 2015 年度環境放射能調査結果

吉村英基,森 康則,前田 明,一色 博,山本昌宏

The Report of Environmental Radioactivity in Mie Prefecture (April 2015~March 2016)

Hideki YOSHIMURA, Yasunori MORI, Akira MAEDA, Hiroshi ISSIKI and Masahiro YAMAMOTO

原子力規制庁からの委託を受け、降水中の全ベータ放射能測定、降下物、大気浮遊じん、河川水、土壌、蛇口水および各種食品試料のガンマ線核種分析(I-131, Cs-134, Cs-137, K-40)ならびに空間放射線量率測定を実施し、三重県における環境放射能の水準を把握した。

核種分析において Cs-137 が降下物試料等から検出されたが、以前から検出されているレベルを超えるものではなかった. 他の調査においても異常値は観測されなかったことから、2015年度の環境放射能の水準は通常の範囲内にあったといえる.

北朝鮮の核実験実施に対応したモニタリング強化においても異常な値は観測されなかった.

キーワード:環境放射能,核種分析,全ベータ放射能,空間放射線量率

はじめに

日本における環境放射能調査は、1954年のビキニ環礁での核実験を契機に開始され、1961年から再開された米ソ大気圏内核実験、1979年スリーマイル島原発事故、1986年チェルノブイリ原発事故を経て、原子力関係施設等からの影響の有無などの正確な評価を可能とするため、現在では全都道府県で環境放射能水準調査が実施されている¹⁾.

三重県は1988年度から同事業を受託し、降水の全ベータ放射能測定、環境試料および食品試料のガンマ線核種分析ならびにモニタリングポスト等による空間放射線量率測定を行って県内の環境放射能のレベルの把握に努めている.

さらに福島第一原子力発電所事故後は、国のモニタリング調整会議が策定した「総合モニタリング計画」²⁾ に基づき原子力規制庁が実施する調査の一部もあわせて行っている.

また,2015年度は2016年1月6日の北朝鮮の核実験実施発表への対応のため,原子力規制庁からの協力依頼を受けてモニタリング強化を実施した。

本報では、2015年度に実施した調査の結果について報告する.

方 法

1. 調査の対象

調査対象は、定時降水(降雨)、降下物、大気浮遊じん、土壌、淡水(河川水)、蛇口水、穀類、農産物、牛乳、海産生物および空間放射線量率である。表1に測定項目、試料の種別、採取場所等を示す。

2. 採取および測定の方法

試料の採取,処理および測定は,「環境放射能水 準調査委託実施計画書」(原子力規制庁)¹⁾ に基 づき実施した.

1) 全ベータ放射能測定

試料の採取:三重県四日市市(34°59'31",136°29'06")の当所屋上(地上18.6m)に設置した降水採取装置で雨水を採取し,24時間の降雨量が1mm以上(毎朝9:00時点)のとき,そこから200mL(それ以下の場合は全量)を取り試料とした.

前処理: 試料にヨウ素担体(1mgI/mL)1mL,0.05mol/L 硝酸銀 2mL および硝酸(1+1) 数滴を加え加熱濃縮し,ステンレス製試料皿($50mm \phi$) で蒸発乾固した.

測定:採取6時間後にベータ線自動測定装置で

測定を行った. 比較試料は,酸化ウラン(U₃O₈: 日本アイソトープ協会製ベータ線比較線源 50Bq)

を用いた. 測定時間は測定試料, 比較試料, バックグラウンド試料(空試料) すべて 40 分とした.

	P1 1071110H		20.7.
項目	試料の種別	採取月等	採取場所
全ベータ放射能	降水 (雨水)	降水ごと(09:00)	三重県四日市市
ガンマ線核種分析	降下物(雨水+ちり)	毎月(1ヶ月間分)	三重県四日市市
	大気浮遊じん	四半期ごと(3ヶ月間分)	三重県四日市市
	淡水(河川水)	2015年10月	三重県亀山市(鈴鹿川)
	土壌(草地)	7月	三重県三重郡菰野町
	蛇口水	6月	三重県四日市市
	蛇口水	四半期ごと(3ヶ月間分)	三重県四日市市
	穀類(精米)	2015年9月	三重県松阪市
	茶 (荒茶)	5 月	三重県亀山市,多気郡大台町
	牛乳	8月	三重県度会郡大紀町
	ほうれんそう	11 月	三重県四日市市
	だいこん	12 月	三重県多気郡明和町
	まだい	4 月	三重県北牟婁郡紀北町(熊野灘)
	あさり	4 月	三重県伊勢市(伊勢湾沿岸)
	わかめ	2016年2月	三重県鳥羽市 (答志島沖)
空間放射線量率	_	連続/毎月1回	三重県四日市市,三重県伊賀市
			三重県伊勢市,三重県尾鷲市

表 1 放射能調査の試料種別の採取時期・場所

2) 核種分析

とした.

月間に降下した雨水およびちりを採取し、濃縮後全量を U-8 容器に移し乾固して測定試料とした. 大気浮遊じん:当所屋上に設置したハイボリウムエアサンプラを用いて、3ヶ月間で10回サンプリング(流速54.0m³/h,24h)を行い、約13,000m³の大気を吸引して大気浮遊じんを10枚のろ紙(ADVANTEC HE-40T)上に採取した.このろ紙を円形に打ち抜き、U-8 容器に充填して測定試料

降下物: 当所屋上に設置した大型水盤で, 1 ヶ

土壌: 三重県三重郡菰野町地内の草地 (山砂土) において梅雨明け後, $2\sim3$ 日降雨がない日に深度 $0\sim5$ cm, $5\sim20$ cm の土壌を採取した. これを 105 で乾燥後, ふるい (2mm メッシュ)を通して得た乾燥細土を U-8 容器に充填し測定試料とした.

淡水:鈴鹿川の河川水 100L を, 三重県亀山市 関町地内(勧進橋下)で採取し,塩酸 (HCl(1+1)2mL/L)を加えて濃縮後,全量を U-8 容器に移し乾固して測定試料とした.

蛇口水: 当所1階研究室の蛇口から水道水を100L 採取し濃縮後,全量をU-8 容器に移し乾固して測 定試料とした.

さらに、「総合モニタリング計画」²⁾に基づくモニタリングとして、毎勤務日に水道水を1.5L採取し四半期ごとにまとめて濃縮後、全量をU-8容器に移し乾固して試料としたものの測定も実施した.

食品:穀類(精米)および牛乳は、それぞれ年 1回採取し、約2kgをそのまま2Lマリネリ容器 に入れ測定試料とした.農産物(茶,野菜)、海産 生物(まだい,あさり,わかめ)は,それぞれ年 1 回収穫時期に採取し,可食部約 $4\sim8$ kg を,蒸発 皿で炭化後,電気炉(450°C,24 時間)で灰化した.灰化物を磨砕後,ふるい(0.35mm メッシュ)を通して異物を除去し,U-8 容器に分取して測定 試料とした.

これら測定試料は、Ge 半導体検出器で測定時間 を 70,000 秒とし放射性核種の測定を行った.

3) 空間放射線量率測定

モニタリングポストによる空間放射線量率の連続測定は県内4地点で実施する体制となっている. 北勢局は当所の屋上(地上18.6mの位置)に検出器を設置している. その他3局は県伊賀庁舎(中勢伊賀局:三重県伊賀市),県伊勢庁舎(南勢志摩局:三重県伊勢市),県広域防災拠点施設(東紀州局:三重県尾鷲市)に設置しており、すべて地上1mの位置に検出器を置き、測定を実施している. 4局の測定データ(10分間値)はオンラインで国へ報告され、ウェブサイト上で公表されている³⁾. あわせて、月1回(毎月第2週水曜日10:00)当所前駐車場の地上1mの位置で、シンチレーションサーベイメータによる測定を行った. 測定法は、時定数を30秒として30秒間隔で5回指示値を読み、その平均値をとる方法とした.

3. 採取 測定装置

1) 全ベータ放射能測定

採取装置:ステンレス製降水採取装置(受水面 積: 1,000cm 2)

降雨量測定装置:(株)小笠原計器製作所製

C-R543 型雨量計

測定装置:日立アロカメディカル(株)製 β 線自動測定装置 JDC-3201

2) 核種分析

降下物採取装置: ステンレス製大型水盤(受水面 積:5,000cm²)

大気浮遊じん採取装置:柴田科学(株)製ハイボリウムエアサンプラ HV-1000F

核種分析装置:キャンベラ製 Ge 半導体検出器 GC2519-DSA2000, GC2520-DSA1000

3) 空間放射線量率測定

モニタリングポスト:日立アロカメディカル (株)製環境放射線モニタ装置 MAR-21, MAR-22 シンチレーションサーベイメータ:日立アロカ

メディカル(株)製 TCS-171

結果および考察

1. 全ベータ放射能測定

全ベータ放射能の測定は、同種の試料の放射能 レベルの相互比較において、迅速に概略の情報を 得られる手法であるため^{4,5}、環境放射能水準調査 では降雨ごとに全ベータ放射能を測定し環境中の 放射能の推移などを把握することになっている¹⁾

表2に2015年度に測定を実施した105件の結果を示した.105試料中12試料から全ベータ放射能が検出された.全ベータ放射能が検出された試料は核種分析を実施したが、人工放射性核種は検出されず、特に異常と判断される試料はなかった.

表 2	定時降水中の全ベータ放射的	能測定結果
水量(mm)	試料数	検出数

採取期間	降水量(mm)	試料数	検出数	降下量(MBq/km²)
2015年4月	161.5	12	4	35
5 月	161.5	6	1	2.7
6 月	517.5	11	-	N.D.
7月	225.5	15	-	N.D.
8月	455.0	13	-	N.D.
9月	261.0	12	-	N.D.
10 月	64.0	4	1	2.3
11 月	134.5	7	-	N.D.
12 月	112.5	6	-	N.D.
2016年1月	59.0	7	2	5.8
2 月	67.5	5	2	8.5
3 月	81.0	7	2	11
2015 年度	2300.5	105	12	N.D.∼35
2014 年度	2337.5	102	16	N.D.∼67
2013 年度	1915.0	97	15	$N.D.\sim 27$
2012 年度*	1704.0	99	19	N.D.~49

注) N.D.: 不検出(計数値が計数誤差の3倍を下回るもの). *2012年度はモニタリング強化対応のため5検体欠測.

2. 核種分析

環境放射能水準調査における核種分析は、原子力発電所の事故や核実験等により大気中に放出された放射性物質による影響を評価するため、大気浮遊じん、降下物、土壌、淡水の環境試料と蛇口水、精米、野菜類、茶、牛乳、水産生物の食品試料について実施している.

定量対象としている核種は、短半減期の核種 6 のうち甲状腺への内部被ばくの影響が大きく重要とされる I-131 (半減期 $^{8.02d}$)、比較的長半減期の核種 6 の指標として 6 Cs-137 (半減期 6 30.04y)、比較の指標として天然放射性核種のうち 6 K-40 (半減期 6 1.277× 6 y) 7 と 2011 年度から福島第一原子力発電所の事故を踏まえて追加した 6 Cs-134 (半減期 6 2.06y) 6 の合計 6 4 核種である.

なお,蛇口水,精米,牛乳を除く食品試料は灰

化して測定を行うため, I-131 は定量対象としていない.

1) 環境試料

表 3 に 2015 年度における三重県内の降下物,大 気浮遊じん,淡水,土壌のガンマ線核種分析結果 を示す.

降下物及び土壌表層(0-5cm)から Cs-137 が検出された. K-40 は降下物の一部, 大気浮遊じん, 淡水, 土壌から検出された. Cs-137 以外の人工放射性核種は検出されなかった. 降下物,土壌のCs-137 検出濃度は事故前と同程度であった. 事故後の全国の環境放射能調査状況 ⁸⁾から見ると, 2015 年度の結果は特に異常は見られず,県内の環境に影響を与えるレベルではないと考えられるが, 今後も継続した監視を行っていく必要があると思われる.

表3 環境試料中の I-131, Cs-134, Cs-137 およびK-40 濃度

	我 0 块	元四八十十一	0) 1 101,	O 5 10 1 , 1	3 3 107 03 05 0		
試 料	採取時期	試料数	単位	I-131	Cs-134*	Cs-137	K-40
降下物	2015年 4月	1	MBq/km ²	N.D.	N.D.	0.043	1.04
	5 月	1	MBq/km^2	N.D.	N.D.	N.D.	1.14
	6 月	1	MBq/km ²	N.D.	N.D.	N.D.	N.D.
	7月	1	MBq/km ²	N.D.	N.D.	N.D.	0.63
	8月	1	MBq/km ²	N.D.	N.D.	N.D.	1.00
	9 月	1	MBq/km ²	N.D.	N.D.	N.D.	N.D.
	10 月	1	MBq/km ²	N.D.	N.D.	N.D.	N.D.
	11 月	1	MBq/km ²	N.D.	N.D	N.D	N.D.
	12 月	1	MBq/km ²	N.D.	N.D.	N.D	N.D
	2016年 1月	1	MBq/km ²	N.D.	N.D.	N.D.	N.D.
	2 月	1	MBq/km ²	N.D.	N.D.	N.D.	0.73
	3 月	1	MBq/km ²	N.D.	N.D.	N.D.	0.75
	2015 年度	12	MBq/km ²	N.D.	N.D.	N.D.~0.043	N.D.~1.14
	2012~2014 年度	36	MBq/km ²	N.D.	N.D.~0.631	N.D.~2.00	N.D.∼1.96
	2011 年度	12	MBq/km^2	N.D.~13.3	N.D.~18.4	N.D.~17.7	N.D.∼1.85
	1989~2010 年度	264	MBq/km ²	N.D.~1.24	-	N.D.~0.348	N.D.~57.9
	2015年 4~6月	1	mBq/m ³	N.D.	N.D.	N.D.	0.222
大気浮遊	7~9 月	1	mBq/m^3	N.D.	N.D.	N.D.	0.240
じん	10~12月	1	mBq/m^3	N.D.	N.D.	N.D.	0.205
	2016年 1~3月	1	mBq/m^3	N.D.	N.D.	N.D.	0.276
	2015 年度	4	mBq/m^3	N.D.	N.D.	N.D.	$0.205 \sim 0.276$
	2012~2014 年度	12	mBq/m ³	N.D.	N.D.	N.D.	0.227~0.310
	2011 年度	4	mBq/m^3	N.D.	N.D.~0.296	N.D.~0.317	$0.239 \sim 0.317$
	1989~2010年度	88	mBq/m^3	N.D.	-	N.D.	N.D.∼0.565
	2015年10月	1	mBq/L	N.D.	N.D.	N.D.	67.9
淡水	2012~2014 年度	3	mBq/L	N.D.	N.D.	N.D.	66.1~81.3
(河川水)	2011 年度	1	mBq/L	N.D.	N.D.	N.D.	67.3
	2003~2010年度	8	mBq/L	N.D.	-	N.D.	$58.1 \sim 78.9$
土壌	2015年7月	1	Bq/kg 乾	N.D.	N.D.	1.39	761
(0-5cm)	2012~2014 年度	3	Bq/kg 乾	N.D.	N.D.	$1.03 \sim 1.35$	706~744
	2011 年度	1	Bq/kg 乾	N.D.	N.D.	1.19	775
	1989~2010 年度	22	Bq/kg 乾	N.D.	-	N.D.~2.69	556~812
土壌	2015年7月	1	Bq/kg 乾	N.D.	N.D.	N.D.	739
(5-20cm)	2012~2014 年度	3	Bq/kg 乾	N.D.	N.D.	N.D.	711~733
	2011 年度	1	Bq/kg 乾	N.D.	N.D.	N.D.	750
	1989~2010年度	22	Bq/kg 乾	N.D.	-	N.D.∼1.63	593~856

注) N.D.: 不検出 (計数値が計数誤差の3倍を下回るもの). 過去のデータの採取場所は,表1と異なるものがある. *Cs-134 は2010年度以前には測定対象としていない.

2) 食品試料

表 4 に 2015 年度における県内の蛇口水, 県内で生産された精米, 茶(荒茶), 野菜類(ほうれんそう, だいこん), 牛乳, 県近海でとれた水産生物(まだい, あさり, わかめ)のガンマ線核種分析結果を示す.

まだいから Cs-137 が検出されたが, 検出値は以前の結果 ^{8,9}と比較して特に高いものではなく平常の値の範囲内にあると考えられた.

2015 年度の食品試料における放射性セシウム

の検出値は、2012 年 4 月に施行された食品の規格 基準(飲料水 10Bq/kg、乳児用食品・牛乳 50Bq/kg、 一般食品 100Bq/kg) 10 と比較して大きく下回る値 であった.

K-40 はすべての試料から検出されたが、表 4 に示した過去の結果および他県の結果 $^{8,9)}$ との比較から、平常値の範囲と判断された.

食品試料においては Cs-137 以外の人工放射性 核種は検出されなかった.

表 4 食品試料中の Cs-134, Cs-137 および K-40 濃度

試料	採取時期	試料数	単位	Cs-134*	Cs-137	K-40
蛇口水	2015年 6月	1	mBq/L	N.D.	N.D.	18.1
	2012~2014 年度	3	mBq/L	N.D.	N.D.	16.9~23.1
	2011 年度	1	mBq/L	0.408	0.434	24.5
	1989~2010 年度	36	mBq/L	-	N.D.~0.313	17.6~69.9
蛇口水	2015年 4~6月	1	mBq/L	N.D.	N.D.	18.6
2.211/31	7~9月	1	mBq/L	N.D.	N.D.	22.5
	10~12月	1	mBq/L	N.D.	N.D.	19.5
	2016年 1~3月	1	mBq/L	N.D.	N.D.	19.5
	2015 年度	4	mBq/L	N.D.	N.D.	18.6~22.5
	2012~2014 年度	12	mBq/L	N.D.	N.D.	16.4~25.5
	2011 年度	1**	mBq/L	N.D.	N.D.	21.3
穀類 (精米)	2015年9月	1	Bq/kg 生	N.D.	N.D.	26.6
	2012~2014 年度	3	Bq/kg 生	N.D.	N.D.	25.9~27.4
	2011 年度	1	Bq/kg 生	N.D.	N.D.	23.0
	1989~2010 年度	22	Bq/kg 生	-	N.D.	21.9~34.2
茶 (荒茶)	2015年 5月	2	Bq/kg 乾	N.D.	N.D.	544~600
	2012~2014 年度	6	Bq/kg 乾	N.D.~0.436	0.161~0.643	551~738
	2011 年度	2	Bq/kg 乾	$3.83 \sim 4.42$	$3.87 \sim 4.71$	623~633
	1989~2011 年度	42	Bq/kg 乾	-	$N.D.\sim 1.72$	$417 \sim 766$
牛乳	2015年8月	1	Bq/L	N.D.	N.D.	49.7
	2012~2014 年度	3	Bq/L	N.D.	N.D.	46.9~49.0
	2011 年度	1	Bq/L	N.D.	N.D.	49.0
	1989~2010年度	36	Bq/L	-	N.D.	$32.0 \sim 51.8$
ほうれんそう	2015年11月	1	Bq/kg 生	N.D.	N.D.	188
	2012~2014 年度	3	Bq/kg 生	N.D.	N.D.	$141 \sim 180$
	2011 年度	1	Bq/kg 生	N.D.	N.D.	146
	1989~2010 年度	22	Bq/kg 生	-	N.D.~0.058	58.0~237
だいこん	2015年12月	1	Bq/kg 生	N.D.	N.D.	124
	2012~2014 年度	3	Bq/kg 生	N.D.	N.D.	$70.3 \sim 95.7$
	2011 年度	1	Bq/kg 生	N.D.	N.D.	77.6
	1989~2010 年度	22	Bq/kg 生	-	N.D.~0.056	63.0~106
まだい	2015年4月	1	Bq/kg 生	N.D.	0.160	156
	2012~2014 年度	3	Bq/kg 生	N.D.	$0.156 \sim 0.165$	$152 \sim 172$
	2011 年度	1	Bq/kg 生	N.D.	0.130	147
	1994~2010 年度	17	Bq/kg 生	-	0.090~0.244	92.5~164
あさり	2015年4月	1	Bq/kg 生	N.D.	N.D.	76.3
	2012~2014 年度	3	Bq/kg 生	N.D.	N.D.	72.3~78.6
	2011 年度	1	Bq/kg 生	N.D.	N.D.	73.0
	2001~2010 年度	10	Bq/kg 生	-	N.D.	31.9~83.2
わかめ	2016年2月	1	Bq/kg 生	N.D.	N.D.	264
	2012~2014 年度	3	Bq/kg 生	N.D.	N.D.	219~234
	2011 年度	1	Bq/kg 生	N.D.	N.D.	236
	1998~2010年度	13	Bq/kg 生	<u>-</u>	N.D.	$105 \sim 278$

注) N.D.: 不検出(計数値が計数誤差の3倍を下回るもの).

3. 空間放射線量率測定

表 5 および 6 に 2015 年度の三重県内における モニタリングポストおよびサーベイメータによ る空間放射線量率の測定結果を示す. モニタリン グポストの測定値は, 従前から報告してきた 1 時 間値の平均値,最大値,最小値を記載した.

各局の最大値は降雨あるいは降雪時に観測され, 気象現象に伴う変動と判断された.

県内の4局の2015年度の測定結果は、過去3年間の結果および他都道府県の観測値³⁾と比較して異常な値は観測されていないことから、平常

過去のデータの採取場所は、表1と異なるものがある.

^{*}Cs-134 は 2010 年度以前には測定対象としていない.

^{**}四半期ごとの蛇口水の測定は2011年度第4四半期から開始している.

の範囲内にあったと考えられる.

東紀州局の測定値が他局と比較して高い値となるのは、この地域の花崗岩質の地質によるもの推定している 11).

空間放射線量率を測定することで、公衆の線量 当量を外部被ばく推定式(1)^{4,12)}により推定するこ とができる。それぞれの地点の 2015 年度の年平 均値を式(1)により換算すると、北勢局 47nSv/h、 中勢伊賀局 66nSv/h、南勢志摩局 52nSv/h、東紀 州局 83nSv/h となり、すべての局で公衆の年線 量当量限度 $(1mSv/年)^{4)}$ の時間換算量 (114nSv/h)を下回っており問題のない結果であるといえる.

 $\text{Hex}(\text{Sv}) = \text{Dex}(\text{Gy}) \times 1.0 \cdot \cdot \cdot (1)$

Hex(Sv):時間当たりの(実効)線量当量 Dex(Gy):時間当たりの(空気)吸収線量 2015年度も福島第一原子力発電所事故を 考慮し換算係数は緊急時の1.0を用いた.

表 5 2015 年度の空間放射線量率 1 (宇宙線による線量率(約30 nGy/h)を含まない)

	北勢局モ	ニタリング	゙ポスト(nG	'y/h)**	サ	ーベイメー	タ(nGy/h)	(地上1 m)	
測定年月	測定回数	平均値	最大値	最小値	測定回数	測定値	平均値	最大値	最小値
2015年 4月	720	46	61	43	1	66	-	-	-
5 月	741^*	46	70	43	1	66	-	-	-
6月	720	47	69	44	1	66	-	-	-
7月	744	47	79	44	1	70	-	-	-
8月	744	47	62	45	1	66	-	-	-
9月	720	48	73	45	1	74	-	-	-
10 月	744	47	73	45	1	67	-	-	-
11 月	720	47	67	45	1	65	-	-	-
12 月	744	46	62	45	1	67	-	-	-
2016年 1月	715*	46	63	41	1	67	-	-	-
2 月	695*	46	59	45	1	69	-	-	-
3 月	744	46	58	45	1	73	-	-	-
2015 年度	8751	47	79	41	12	-	68	74	65
2014 年度	8751	46	75	40	12	-	67	69	65
2013 年度	8758	46	67	43	12	-	68	75	63
2012 年度	8751	46	72	43	12	-	71	82	66

^{*} 機器点検等のため欠測がある.

表 6 2015 年度の空間放射線量率 2 (宇宙線による線量率(約 30 nGy /h)を含まない)

測定年月	中勢	中勢伊賀局(nGy/h)		南勢	夢志摩局(nG	y/h)	東紀州局(nGy/h)*		
	平均値	最大値	最小値	平均値	最大値	最小値	平均値	最大値	最小値
2015年 4月	66	92	63	52	64	50	83	99	81
5 月	66	103	64	53	66	51	83	95	81
6月	66	91	63	53	82	50	84	109	80
7月	66	96	63	52	70	49	84	111	80
8月	66	84	64	53	69	49	84	114	80
9月	66	81	63	53	83	49	84	121	80
10 月	66	92	64	53	65	50	83	94	81
11 月	66	91	64	52	70	49	83	118	81
12 月	66	84	64	51	68	49	83	96	81
2016年 1月	66	93	64	51	81	49	83	111	81
2 月	66	78	63	51	74	49	83	101	81
3 月	66	81	63	51	71	49	83	116	81
2015 年度	66	103	63	52	83	49	83	121	80
2014 年度	66	110	62	53	80	49	83	115	78
2013 年度	66	99	55	52	80	43	87	123	78
2012 年度	65	108	59	53	84	48	92	125	89

^{*}東紀州局では 2013 年 9 月に検出器近傍の建屋が撤去され測定環境が変化したため、線量率のレベルに変化が生じた.

地上 1m でのサーベイメータによる測定についても、異常値は観測されておらず、機器の精度、

回数および測定条件等から、結果が変動しやすく、 測定地点の違いからモニタリングポストの測定値

^{**} 北勢局は 2016 年 1 月に日立アロカメディカル(株)製 MAR-21 から同社製 MAR-22 に機器更新を行った.

より高い値を示す傾向があることを考慮すると、 2015 年度の測定結果は平常値の範囲と判断された. 異常時に的確に対応するためには、さらに観測を 継続して平常時における各地域の空間放射線量率 の変動幅などについて把握しておく必要があると 思われる.

4. モニタリング強化

モニタリング強化は海外で原子力事象が発生した際等に国からの指示に基づき実施することになっており、その実施内容は「環境放射能水準調査委託実施計画書」(原子力規制庁)¹⁾に定められている。

2015 年度は北朝鮮による核実験実施発表があった1月6日から1月15日まで9日間モニタリング強化を行った.実施内容はモニタリングポストによる空間放射線量率連続測定の監視強化と大気浮遊じん,降下物および降水についてのガンマ線核種分析であった.

1) 空間放射線量率連続測定の監視強化

モニタリングポストの連続測定データは現在オンラインで 10 分間値が国へ報告されており、その値を元に公表 13 が行われたが、ここでは、期間中の1時間値の最大値、最小値、平均値を表7に示した。核実験実施発表前と比較して大きな変動はなく、影響は認められなかった。

表 7 モニタリング強化期間の空間放射線量率

	nGy/h	平均值	最大値	最小値
北勢局	期間前	46	49	45
	期間中	46	49	45
中勢伊賀	期間前	66	68	65
局	期間中	66	69	64
南勢志摩	期間前	51	53	50
局	期間中	51	53	50
東紀州局	期間前	83	92	82
	期間中	83	84	82

期間前:2016年1月1日~5日

期間中: 2016年1月6日10:00~15日13:00

2) ガンマ線核種分析

①大気浮遊じん

通常のモニタリングで実施する方法と同様に24時間集じんを行ったろ紙を円形に打ち抜き分取してU-4容器に充填したものを測定試料とした.この測定試料を測定時間20,000秒でガンマ線核種分析を行った.

②降下物および降水

通常モニタリングにおいて全β放射能測定に 使用している降水採取装置を用い24時間の降 下物および降水を採取した.降水が80mL以上 採取された場合は80mLを分取し,80mL未満の場合は全量をU-8容器に充填し測定試料とした.降水がなかった場合は採取装置内を少量の純水で洗浄し洗浄液をU-8容器に充填し試料とした.この測定試料を測定時間20,000秒でガンマ線核種分析を行った.

大気浮遊じん,降下物および降水とも核種分析の結果,人工放射性核種は検出されず核実験の影響は認められなかった.

まとめ

- 1.2015年度の三重県定点における降水中の全ベータ放射能測定からは、特に異常なデータは得られなかった.
- 2.2015年度の環境試料(降下物,大気浮遊じん,陸水,土壌)および食品試料(蛇口水,農産物,水産物)中のガンマ線放出核種の測定結果では,人工放射性核種である Cs-137 が一部試料から検出された.検出濃度は問題となるレベルではなかったが,今後も調査を継続し推移を把握していく必要がある.
- 3.2015年度の三重県定点におけるモニタリングポストによる連続測定,サーベイメータを用いた月1回の測定では,空間放射線量率の異常値は観測されなかった.
- 4.2015 年度の環境放射能水準調査で得られた結果は 2014 年度の観測結果とほとんど変化はなく 平常の状態であったと言える.
- 5.2016年1月6日の北朝鮮による核実験実施発表への対応として行ったモニタリング強化では、 異常は観測されなかった.

本報告は,原子力規制庁からの受託事業として, 三重県が実施した「環境放射能水準調査」の成果 である.

文 献

- 1) 原子力規制庁監視情報課放射線環境対策室:環境放射能水準調查委託実施計画書(2015).
- 2) モニタリング調整会議:「総合モニタリング 計画」(2013).
- 3) 原子力規制委員会ウェブサイト「放射線モニタリング情報 | http://radioactivity.nsr.go.ip/ia/
- 4) 原子力安全委員会:環境放射線モニタリング 指針(2008).
- 5) 文部科学省: 放射能測定法シリーズ1 「全 β 放射能測定法」(1976).
- 6) (社) 日本アイソトープ協会: アイソトープ 手帳 11 版, 丸善(2011).

- 7) Measurement of Radionuclides in Food and the Environment / A Guidebook, IAEA, VIENNA (1989).
- 8) ウェブサイト「日本の環境放射能と放射線」 http://www.kankyo-houshano.go.jp/
- 9)(財)日本分析センター:平成5年度~平成22年度環境放射能水準調査結果総括資料.
- 10) 2012 年 3 月 15 日付け食安発 0315 第 1 号厚生労働省医薬食品局食品安全部長通知:「乳及び乳製品の成分規格等に関する省令の一部を改正する省令,乳及び乳製品の成分規格等に関する省令別表の二の(一)の(1)の規定に基づき厚生労働大臣が定める放射性物質を定める
- 件及び食品,添加物等の規格基準の一部を改正 する件について」.
- 11) 尾辺俊之,富森聡子,橋爪 清:三重県内の空間放射線量率について,三重県衛生研究所年報 No.39, 93-98 (1993).
- 12) 吉岡満夫: 公衆の被ばく線量評価, 中島敏行編 緊急時における線量評価と安全への対応, 放射線医学総合研究所, 17-40 (1994).
- 13) 原子力規制委員会ウェブサイト「北朝鮮による核実験実施発表に対する放射能影響の観測 結果について」http://www.nsr.go.jp/activity/ monitoring/monitoring5.html/