テラヘルツ時間領域分光法を用いた陶磁器素地の焼結性の評価

新島聖治*, 庄山昌志**, 村上和美***, 川瀬晃道****

Evaluation of Sintering Property in Pottery Bodies Using Terahertz Time-Domain Spectroscopy

Seiji NIIJIMA, Masashi SHOYAMA, Kazumi MURAKAMI and Kodo KAWASE

We demonstrated the evaluation of sintering property of pottery bodies using terahertz time-domain spectroscopy (THz-TDS). The absorption coefficient and the refractive index of sample fired at various temperatures were obtained in frequency range from 0.3 to 1.3 THz. The refractive index was closely related to sintering property of the sample. The results suggest that THz analysis may be enable monitoring the firing process of ceramics.

Key words: Terahertz Time-Domain Spectroscopy, Pottery Body, Absorption Coefficient, Refractive Index, Bulk Density

1. はじめに

テラヘルツ(THz)波は、周波数帯域 0.3~10 THz (波長 1 mm~30 µm) 程度の電磁波であり、光波 と電波の中間に位置し、両者の性質を兼ね備えてい る.光波のようにレンズやミラーを用いて空間を自 在に取り回すことができ、電波のように紙、樹脂、 セラミックス等様々な物質を透過することができ る.また、試薬、医薬品、農薬等に対しては、固有 の吸収スペクトルを示すことや、電波と比較して波 長が短いために適度な空間分解能を有しているこ と、X線と比較して低エネルギーであること等の特 長を持つ.

これまで、THz 領域は発振器や検出器の技術的 問題から、「未開拓な領域」として認識されてきた. しかし近年の技術革新により、THz 波の応用に関 する関心が世界的に高まっている.その要因のひと つは、フェムト秒レーザー技術の目覚ましい発展に

*	窯業研究室伊賀分室
* *	窯業研究室
* * *	エネルギー技術研究科
* * * *	名古屋大学大学院

より,広帯域 THz 波パルスの発生及び検出法が開 発されたことである.この技術を用いたテラヘルツ 時間領域分光法(Terahertz Time-Domain Spectroscopy: THz-TDS)は,工業,医薬品,食 品,農業,文化財,セキュリティーなど多岐にわた る分野での非破壊・非接触検査技術として期待され ている¹⁻¹¹⁾.

陶磁器やセラミックスの製造において, 焼成プロ セスの管理は非常に重要であり, それは熱電対など の各種センサーにより管理されている.しかし, 熱 電対の位置や炉内の温度分布の不均一性により, 焼 成不足や過焼成が生じることがある.このような焼 成の不具合は, セラミックス製品の品質に影響を及 ぼす^{12,13)}.現在, 焼成の不具合は, 焼成後のセラ ミックス製品の物性評価により行われている.セラ ミックスの品質の維持や製造プロセスの効率化の ためには, 焼成プロセスをリアルタイムで計測する システムが求められている.近年, Miao らは中国 の陶磁器素地の THz 波特性と焼成温度の関係を調 査し, THz 波による陶磁器素地の焼成プロセス管 理の可能性を報告している¹⁴⁾.しかしながら, 陶

表1 試験した陶磁器素地の化学組成(単位:wt%)

素地名	SiO_2	Al_2O_3	$\mathrm{Fe}_2\mathrm{O}_3$	TiO_2	CaO	MgO	K ₂ O	Na ₂ O	Li ₂ O	Ig. Loss
半磁器土	68.96	20.90	0.51	0.36	0.16	0.09	1.81	0.37		6.67
萬古急須土	64.55	18.37	3.87	0.75	0.36	0.64	2.36	0.68		8.56
低温焼成磁器	58.32	27.58	0.42	0.24	0.17	0.09	2.91	2.35	0.60	7.56

磁器素地の焼結性(吸水率,かさ密度,収縮率など) とTHz 波特性の詳細な関係は明らかとなっていな い.本報告では,THz-TDSによる焼成プロセスの 管理技術の可能性を検討するために,3種類の陶磁 器素地の焼結性とTHz 波特性の関係を調べた.ま た,THz波2次元イメージング測定を行ったので, その結果を併せて報告する.

2. 実験方法

2. 1 試料作製

陶磁器素地として,三重県陶磁器業界で使用されている半磁器土(陶器質,1150~1200 °C 焼成 用),萬古急須土(炻器質,1150~1200 °C 焼成 用)及び低温焼成磁器土¹⁵⁾(磁器質,1100~1200 °C 焼成用)を使用した.これら陶磁器素地の化学 組成を表1に示す.各陶磁器粉末を金型に入れ, プレス圧 0.5 t/cm²で円板状(φ25 mm×5 mm) に一軸加圧成形し,電気炉にて大気中 800~1400 °C で焼成した.焼成プログラムは,目的温度まで 60 °C / h で昇温させ,その温度で1時間保持し, 炉内放冷とした.得られた焼成体を10 mm×10 mm×2 mmの板状に加工し,測定試料とした.

2.2 評価

陶磁器素地の焼結性を評価するために,吸水率及 びかさ密度を煮沸によるアルキメデス法で測定し た.また,試料のX線透過像を160kV,70µAの 条件でX線CT((株)島津製作所製SMX-225CT) により撮影した.THz波特性は,THz分光イメー ジング装置((株)アドバンテスト製TAS-7400TS) を用いて,透過モードでのポイント測定及びイメー ジング測定により行った.ポイント測定の積算回数 は1024回,イメージング測定の積算回数は128回 とし,周波数分解能は7.6 GHzとした.イメージ ング測定は,焼成温度の異なる試料(10 mm×10 mm)を9個並べ,ステップ幅1 mmで10 mm× 90 mmの範囲で行った.なお測定は,大気中の水 分の影響を除去するために,乾燥空気をパージした アクリル製ボックス内で行った.次項に THz-TDS の詳細を述べる.

2.3 THz 時間領域分光法(THz-TDS) テラヘルツ時間領域分光法(THz-TDS)は、広

帯域 THz 波パルスを試料に入射させ, 試料を透過 または反射した後の THz 波パルスの波形を時間領 域で取得し, その波形をフーリエ変換することによ り周波数領域での振幅と位相を得る分光法である ¹⁶⁾. 光の強度を計測する通常の分光法とは異なり, THz-TDS では電磁波の波形そのものを計測する.

図1に本研究で使用したTHz-TDS装置の概略図 を示す.ポンプ光及びプローブ光として,2つのフ ァイバーレーザー(波長1550 nm,パルス幅50 fs, 繰り返し周波数50 MHz)を使用した.ポンプ光は, THz 波パルスを発生させるために光伝導アンテナ 方式のTHz 波発生器へと導かれる.一方,光伝導 アンテナ方式のTHz 波検出器へと導かれたプロー ブ光は,コントローラーにより時間遅延を与えら れ,試料を透過/反射してきたTHz 波パルスの時 間波形を取得する.この時間波形を高速フーリエ変

図1 本研究で使用した THz-TDS 装置の概略図

換することにより,周波数領域の振幅や位相を得る ことができる.更に振幅や位相を解析することによ り,透過,吸収,反射スペクトルや屈折率,誘電率 等の光学定数に関する情報を得ることできる4%.

3. 結果と考察

3.1 陶磁器素地の焼結性と THz 波特 性の関係

各陶磁器素地の焼成温度と吸水率及びかさ密度 の関係を図 2 に示す.半磁器土及び低温焼成磁器 土に対して,吸水率は焼成温度の上昇に伴い減少 し,ほぼ0%となった.萬古急須土に対しては,吸 水率は焼成温度の上昇に伴い減少し,ほぼ0%とな った後,緩やかに増加した.かさ密度は,すべての 陶磁器素地に対して,焼成温度に伴い増加し,吸水

 図 2 陶磁器素地の焼成温度と吸水率及びか さ密度の関係(□:吸水率 ●:かさ
密度): a) 半磁器土 b) 萬古急須土
c) 低温焼成磁器土

図3 種々の温度で焼成した陶磁器素地の THz 波透過スペクトル: a) 半磁 器土 b) 萬古急須土 c) 低温焼成 磁器土

- 145 -

率がほぼ0%となった温度で最大値をとった後,減 少した.低温焼成磁器土は,他の陶磁器素地と異な り,かさ密度がほとんど一定となる温度範囲が存在 し,それは1100~1250°Cであった.

一般的に,陶磁器やセラミックスは焼成温度の上 昇に伴って緻密化が促進され,吸水率の減少が起こ る.求められる材料特性により決定されるが,通常, 最適な焼成温度は最も緻密化する温度以下となる. そのため,適切な焼成温度範囲を超えると,いわゆ る"過焼成"状態となり,素地表面や内部が発泡す るなどして,かさ密度の減少や吸水率の増加が起こ る.図2において,半磁器土では1350°C以上, 萬古急須土では1250°C以上,低温焼成磁器土で は1300°C以上でかさ密度の減少が見られ,過焼 成状態になっていることがわかる.

図3に1000~1400 °C で焼成した各陶磁器素地 の0.3~1.3 THz における透過スペクトルを示す. 陶磁器素地の THz 波透過スペクトルには特徴的な ピークは見られなかった.しかし,すべての陶磁器 素地において,焼成温度の上昇に伴って THz 領域 における透過率は大きく減衰した.なお,800~ 1000 °C の温度範囲では,透過スペクトルに大きな 違いはなかったことを確認した.本研究では,水分 の影響を除去するために,100 °C で24 時間乾燥さ せ,デシケータ内で保管した試料を測定に供してい る.加えて,測定は乾燥空気をパージしたアクリル 製ボックス内で行った.従って,THz 領域におけ る透過率の大きな減衰は,水分によるものではない と考えられる.以上のことから, THz 波透過スペ

図 4 陶磁器素地の焼成温度と 0.5 THz に おける吸収係数の関係

クトルに焼成温度依存性が認められたことがわか るが、スペクトルの変化からは過焼成に関する情報 は得られない.そのため、陶磁器素地の焼結性と THz 波特性(吸収係数,屈折率)の関係を調査し た.

図4及び図5に,800~1400°Cで焼成した各陶 磁器素地の0.5 THzにおける吸収係数及び屈折率 の焼成温度依存性をそれぞれ示す.本研究では, S/N比を考慮して,0.5 THzにおける値を選択した. 図4において,0.5 THzにおける吸収係数は焼成温 度の上昇とともに増加した.吸収係数は、各陶磁器 素地の最適焼成温度域以上でも増加し続けており, 過焼成に関する情報を含んでいないと考えられる.

一方,図5に示すように,0.5 THz における屈折 率は焼成温度の上昇に伴って増加し,最大値をとっ た後,ある温度で減少した.その温度は,半磁器土 では1350°C,萬古急須土では1250°C,低温焼成 磁器土では1300°Cであった.これらの温度は, 図2において各陶磁器素地のかさ密度が減少する 温度に一致している.つまり,THz領域における 屈折率はかさ密度と関係していると考えられる.以 上のことから,THz領域の屈折率の焼成温度依存 性を調査することにより,陶磁器素地の緻密さや過 焼成に関する情報を取得することができる.

3. 2 THz 波 2 次元イメージング

ー例として,900~1400 ℃ で焼成した半磁器土 のTHz波透過率及び屈折率イメージング(0.5~0.7 THz)をX線透過像とともに図6に示す.X線透 過像では,焼成温度による違いは明確に見られない

図 5 陶磁器素地の焼成温度と 0.5 THz に おける屈折率の関係

図 6 種々の温度で焼成した半磁器土の THz 波 イメージング像及び X 線透過像

が、THz 波イメージングでは違いが見られた.特 に、屈折率イメージングでは、焼結性を明確に捉え ることができる.また注目すべきは、THz 波イメ ージングでは試料内にコントラストが認められた ことである.これは、試料内の焼成ムラや密度ムラ などの不均一性を表しているかもしれない.以上の ことから、THz 波イメージングは試料の焼結性に 加え、試料内の不均一性を可視化できる可能性があ り、陶磁器やセラミックス製品の非破壊・非接触な 検査技術としての応用が期待できる.

4. まとめ

本研究では、THz-TDSを用いて、三重県陶磁器 産業界で製造されている3種類の陶磁器素地の焼 結性とTHz波特性の関係を調べるとともに、2次元 イメージング測定を行った.その結果、陶磁器素地 のTHz波特性は焼成温度に大きく依存することが わかった.特に、THz領域における屈折率と陶磁器 素地の焼結性は密接に関係しており、屈折率の焼成 温度依存性から緻密さと過焼成に関する情報を得 ることができた.また、THz波2次元イメージング は焼結性に加え,試料内の不均一性を可視化できる 可能性が示唆された.これらのことから、THz波を 用いることにより、陶磁器やセラミックスの製造プ ロセスの管理や非破壊・非接触検査技術としての応 用が期待できる.

謝辞

THz 波測定装置は,経済産業省平成25年度補正 予算事業「地域オープンイノベーション促進事業」 により導入された.ここに記して感謝の意を表す.

参考文献

- M. Tonouchi : "Cutting-edge terahertz technology". Nature Photonics, 1(2), p97-105 (2007)
- 2) M. Naftaly et al. : "Terahertz time-domain spectroscopy for material characterization". Proc. IEEE, 95(8), p1658-1665 (2007)
- 3) T. Fujii et al.: "Dielectric characteristics of ferroelectric materials in submillimeter-wave regions". Jpn. J. Appl. Phys., 43, p6765-6768 (2004)
- 4) C. Stoik et al.: "Nondestructive evaluation of aircraft composites using transmissive terahertz time-domain spectroscopy". Opt. Express, 16(21), p17039-17051 (2008)
- 5) K.Z. Rajab et al. : "Broadband dielectric characterization of aluminum oxide (Al₂O₃)". J. Micro. And Elect. Pack, 5, p101-106 (2008)
- 6) L. Xing et al. : "Nondestructive examination of polymethacrylimide composite structure with terahertz time-domain spectroscopy". Polymer Testing, 57, p141-148 (2017)
- 7) K. Kawase et al. : "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints". Opt. Express, 11(20), p2549-2554 (2003)
- 8) I. Takeuchi et al. : "Estimation of crystallinity of trehalose dehydrate microspheres by usage of terahertz time-domain spectroscopy". J. Pharm. Sci., 101(9), p3465-3472 (2012)
- 9) P. Jepsen et al.: "Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy". Opt. Express, 15(22), p14717-14737 (2007)
- 10) E.C. Camus et al.: "Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy". Sci. Rep., 3, p2910 (2013)
- 11) K. Fukunaga et al. : "Terahertz spectroscopy applied to the analysis of

- 147 -

artists' materials " . Appl. Phys. A, 100, p591-597 (2010)

- 12) Y. Kobayashi et al. : "Effect of firing temperature on bending strength of porcelains for tableware". J. Am. Ceram. Soc., 75(7), p1801-1806 (1992)
- 13) L.H. Hu et al. : "Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics" . Ceram. Int., 36, p1697-1701 (2010)
- 14) X.Y. Miao et al. : "Optical properties of traditional ceramic with different sintering temperatures in terahertz range". Proc. SPIE, 9795, p321-326 (2015)
- 15) 伊藤隆ほか: "低温焼成磁器用組成物および低温焼成磁器の製造方法".特許第 5083971号
- 16) 阪井清美: "テラヘルツ時間領域分光法".分光研究, 50(6), p261-273 (2001)