テラヘルツ分光による水素製造触媒の劣化診断

新島聖治*,松田英樹**,橋本典嗣*,西山 亨*

Evaluation of Degradation State of Hydrogen Production Catalysts by Terahertz Spectroscopy

Seiji NIIJIMA, Hideki MATSUDA, Noritsugu HASHIMOTO and Toru NISHIYAMA

Catalysts for methane dry reforming reactions degrade in performance due to the deposition of carbon on their surfaces. However, the degradation evaluation technology for such catalysts has not been established. In this study, the degradation detection of hydrogen production catalysts by terahertz (THz) waves, which are expected to be a new nondestructive inspection technology, was examined. Since THz waves are extremely sensitive to carbon, THz wave transmission characteristics before and after the catalytic reaction could be used to evaluate the state of degradation.

Keywords: Terahertz Time-Domain Spectroscopy, Catalyst, Dry Reforming, Transmittance, Absorption Coefficient

1. はじめに

触媒化学分野では、セラミックスは触媒自体と してだけでなく、貴金属などの担体や助触媒を添 加する形でも利用されている.近年の水素社会の 実現に向けての様々な取り組みにおいても、セラ ミック触媒の果たす役割は大きい.例えば、温室 効果ガスであるメタンと二酸化炭素から、水素と 一酸化炭素で構成される合成ガスを生成すること ができるメタンドライリフォーミング反応では、 触媒が必要となる.

一般的に、メタンドライリフォーミング反応は 大きな吸熱反応であるため、800℃以上の高温が 必要となるが、設備や周辺部材などの耐久性やコ ストなどを考慮すると、600℃以下での反応が求 められる.しかし、600℃以下での反応時には、 触媒活性が低下するとともに、副反応として進行 する触媒表面上への炭素析出が顕著になり、耐久 性が著しく低下する^{1,2}.本研究室ではこれまで に、非貴金属である Ni を担持させたアルミナ触

* 窯業研究室

** 三重県環境生活部

媒(Ni/Al₂O₃)³⁾に着目し,様々な元素を助触媒と して添加することにより,低温反応時の触媒活性 および耐久性の向上に取り組んできた⁴⁻⁶⁾.

これらメタンドライリフォーミング反応用の 触媒をはじめ、劣化時に炭素が析出する触媒の劣 化診断は、反応効率自体の評価に加え、熱重量示 差熱分析⁷7により行われることが多い.熱重量示 差熱分析は、炭素を燃焼させ、重量減少として析 出した炭素量を見積もるため、加熱工程が必要と なる.実際の産業利用においては、触媒の使用期 間(例えば1年後)に基づいて触媒を交換するな どのメンテナンスが行われており、使用環境で劣 化状態を調べることはあまり行われていない.

本研究では、新たな非破壊検査技術として期待 されているテラヘルツ波(THz 波)⁸⁾を用いて、水 素製造触媒の劣化診断を試みた.周波数帯域 0.3-10 THz(波長 1 mm-30 µm)程度の電磁波である THz 波は、炭素に吸収される性質を持つため⁹⁾、 触媒反応前後の THz 波透過特性に大きな違いが 見られた.THz分光での劣化診断は、加熱工程を 必要とせず、より迅速に析出した炭素量に基づい て劣化状態を把握できることがわかった.

2. 実験方法

2.1 試料作製

水素製造触媒として、Ni-Fe/Al₂O₃触媒を含浸法 により調整した 5,6. 触媒の調整フローを図1に 示す. 硝酸ニッケル・六水和物 (Ni(NO₃)₂・6H₂O, 関東化学(株)製),硝酸鉄・九水和物(Fe(NO₃)₃・ 9H₂O,関東化学(株)製)および酸化アルミニウ ム(活性)(粒状)(Al₂O₃,関東化学(株)製)を 出発原料とし、触媒中の Ni の割合が 10 wt%とな るよう H₂O に溶解した. 助触媒 Fe の割合は Ni/Al₂O₃ 触媒に対して 5 wt%とした. この水溶液 を温浴上で蒸発乾固した後, 電気炉にて 600 ℃ で 焼成し, 触媒とした. 得られた触媒を, 固定床流 通式反応装置を用いて、H2による還元処理を(1 h) が完了した時点を開始時間(0h)として112h 触媒反応を進め、触媒活性を評価した.詳細は既 報5のとおりである.なお,触媒反応の途中で, 析出した炭素の一部を酸化させる処理を施し(86-112 h),炭素量の制御を試みた.

図1 Ni-Fe/Al₂O₃触媒の調製フロー

2.2 評価

触媒反応を 0-112 h 進行させた Ni-Fe/Al₂O₃ 触媒の THz 波透過特性を THz 分光イメージング装置((株) アドバンテスト製, TAS-7400TS) により評価した, 周波数分解能は 7.6 GHz, 積算回数は 1024 回とした. 今回測定した Ni-Fe/Al₂O₃ 触媒は, 図 2 に示すように 略球形の粒状であるため,そのままの状態では THz 波測定は困難である.そのため, Ni-Fe/Al₂O₃ 触媒を 粉砕し,粉末測定用治具に充填し(充填厚さ:0.7 mm),測定に供した.なお,THz 波測定は,大気中 の水分の影響を除去するために,乾燥空気をパージ したアクリル製ボックス内で行った.本研究では, 各反応時間につき5検体を準備し,それぞれに対し てTHz波透過特性を測定し,吸収係数および屈折率 の平均値,標準誤差を求めた.

電界放射型走査電子顕微鏡(日本電子(株)製, JSM-7001F)により,触媒の表面構造を観察した. また,触媒反応を進行させた Ni-Fe/Al₂O₃触媒の 600°Cにおける強熱減量を測定することで,劣化 時に析出した炭素量を見積もった.

3. 結果と考察

図2に、Ni-Fe/Al₂O₃触媒の反応に伴うメタン変 換効率(触媒活性)の変化を示す.ここでは、反 応直後のメタン変換効率を 100 %とした相対値で 表した.メタン変換効率は触媒反応時間に伴い減 少し,反応時間 86 h で 15 %まで低下した. その 後、酸化処理を施すことにより、メタン変換効率 は 30%まで増加した. 図 3 に, Ni-Fe/Al₂O₃ 触媒の 反応に伴う強熱減量の変化を示す.本研究では, 析出した炭素量の指標として強熱減量を用いた. 強熱減量は, 触媒反応時間が増加するにつれて増 加し,86hで最大となった後,減少した.この挙 動は,図2のメタン変換効率の変化と対応してい る. また,図4に示すように,触媒表面への炭素 粒子の析出が認められた. したがって, 反応時間 に伴う Ni-Fe/Al₂O3 触媒の劣化は、触媒粒子の微細 構造や比表面積の増大等ではなく、触媒表面への 炭素析出が主な理由と考えられた.

図 2 触媒反応の進行に伴う Ni-Fe/Al₂O₃触媒のメ タン変換効率の変化

図 3 触媒反応の進行に伴う Ni-Fe/Al₂O₃触媒の強 熱減量の変化

図4 触媒反応の進行に伴う Ni-Fe/Al₂O₃触媒の表 面 SEM 写真

図 5 触媒反応の進行に伴う Ni-M/Al₂O₃ 触媒の THz 波透過スペクトル

図 6 触媒反応の進行に伴う Ni-M/Al₂O₃ 触媒の 0.3 THz における吸収係数の変化 (n = 5, error bar = ±SE)

図 7 Ni-Fe/Al₂O₃触媒の外観

Ni-Fe/Al₂O₃ 触媒の反応に伴う THz 波透過スペ クトルの変化を図5に示す. THz 波透過率は触媒 反応が進むにつれて大きく減衰した. THz 波は炭 素に吸収されるために、反応に伴う触媒表面上へ の炭素析出により、THz 波透過率が 40 dB 程度減 衰したと考えられる.図6に,Ni-Fe/Al₂O₃触媒の 反応に伴う 0.3 THz における吸収係数の変化を示 す. 吸収係数は触媒反応時間に伴い増加し,86 h で最大となった後,減少した.この挙動は,炭素 の析出量の変化(図3)と対応している.つまり, 炭素に敏感に応答する THz 波を用いることによ り、Ni-Fe/Al₂O₃ 触媒のメタン変換効率の変化を知 ることができる.図7に示すように、Ni-Fe/Al₂O₃ 触媒は反応前後ともに黒色であり、目視による劣 化判断は困難である.これに対して,本研究の THz 波による解析では,その劣化状態を非破壊で評価 することが可能である.本報告では、メタン変換

効率が15%まで低下すると、THz 波はほとんど透 過しなくなった.各触媒の活性とTHz 波透過特性 との関係を一旦構築することにより、その後は THz 分光のみで触媒の交換のタイミングがわかる 可能性がある.

4. まとめ

本研究では、THz 分光により水素製造触媒の劣 化診断を試みた.その結果、炭素に敏感な性質を 持つ THz 波は、反応に伴う触媒表面上への炭素析 出を高感度に検出することができることがわかっ た.このことは、劣化時に炭素が析出する他の触 媒の非破壊劣化診断に応用できることを示してい る.

参考文献

- T. Stroud et al.: "Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts". Appl. Catal. B: Environ., 224, p125-135(2018)
- S. Shoji et al.: "Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane". Chem. Sci., 10, p3701-3705(2019)
- E. Meloni et al.: "A Short Review on Ni Based Catalysts and Related Engineering Issues for

Methane Steam Reforming". Catalysts, 10, p352-389(2020)

- 4) 橋本典嗣ほか: "エタノールの水蒸気改質における Ni/ZrO2-TiO2 触媒への Ce 添加の効果".
 平成 27 年度三重県工業研究所研究報告,40, p105-110 (2016)
- 5) 松田英樹ほか:"種々の助触媒を添加した Ni/Al2O3 触媒の調製とメタンドライリフォー ミング特性". 令和2年度三重県工業研究所研 究報告, 45, p92-98 (2021)
- 松田英樹ほか: "メタンドライリフォーミング 特性に及ぼす Ni/Al2O3 触媒への助触媒添加比 率の影響". 令和3年度三重県工業研究所研究 報告,46, p54-58 (2022)
- A. Ishihara et al.: "Effects of the addition of CeO2 on the steam reforming of ethanol using novel carbon-Al2O3 and carbon-ZrO2 compositesupported Co catalysts". RSC Adv., 11, p8530-8539 (2021)
- M. Tonouchi: "Cutting-edge terahertz technology", Nat. Photonics, 1[2], p97-105 (2007)
- Y. Hirakawa et al.: "Evaluation of rubber products by terahertz time-domain spectroscopy". J. Infrared. Milli. Terahz. Waves, 32, p1457-1463 (2011)