温州ミカンの銅欠乏症に関する研究
第2報 温州ミカンに対する銅欠乏対策試験

上野武夫** 森本拓也** 西場静雄** 下迫勇助***
茨谷久治** 辻本敏一**** 中村紀久男****

Studies on the copper deficiency of Satsuma oranges I
The experiments of counter-measure copper deficiency of satsuma oranges

Yusuke Shimosekako. Hisao Shibuya Keichi
Tsuzimoto and Kikko Nakamura

緒 言
温州ミカンの銅欠乏症については、第1報（上野ら 1972）において、実験調査結果に基づいて、症状が未発生状態について報告した。今後の症状が増加することが予想されるので、その対策を検討するために、1969年に、温州の葉剤散布と銅剤に変えて各種銅剤処理試験を行ない、同時に土壌面よりの対策を考えられる意味で、土壌処理試験を行なった。また1970〜71年にかけてボルドー液を散布する場合は、土壌や調製の面で問題が多いため、このボルドー液に変わる銅葉面散布剤の利用試験と銅剤の増重量散布試験を行なった。この結果、本症に対する対策の効果はある程度明らかにすることことができた。なお最近急速に増加している温州の欠乏症等と合わせて検討が必要である。

本研究に当たり、試験事務局長、試験員各位に協力していただき、現地では、多気町農協、長谷川指導員、御板町農協、浦野指導員、竹崎村役場関係者の協力をえた。葉面散布剤の提供をはじめ試験を行うために重要であり、また化学薬品の配布、江村技術部長、植村技術部長、西原技術部長の協力を得たので、ここに深甚なる感謝の意を表する次第である。

材料および方法
1. 対策試験の種類および実施年次
(1) 各種銅剤処理試験
 a) 欠乏対策効果試験 1969年
 b) 病害防止効果試験 1969年
(2) 葉面散布剤利用試験
 c) 散布回数試験 1970年
 d) 銅、亜鉛組合せ試験 1970〜71年
 e) 亜鉛剤効果を検査試験 1970年
(3) 銅剤の増重量散布試験 1970〜71年
(4) 土壌処理試験 1969年
(5) 銅剤散布試験 1969年
2. 試験方法
 (1) 各種銅剤処理試験
 a) 欠乏対策効果試験
 1) 供試園および供試樹
 多気町多気町田園、加賀氏の蔵で8年生温州を使用し、1968年の調査結果から供試樹を、欠乏症と軽度に分け1区1株3反復で試験を行なった。
 2) 供試葉剤および使用倍数
 3月、5月B W (ボルドー)の5〜15号、シルバーサン(水和剤(75%)の750倍液、オキサン水和剤の(30%)500倍液、K1(葉面散布剤、塩化鋼10倍、1,000倍液、プランク水和剤の1,000倍液、および土壌用として塩化鋼を供試した。)
 3) 試験区および処理月日
 試験区および処理月日は第1表に示される通りで、3月B W区は4月4日にボルドー液を散布し、5月B W区は5月28日にボルドー液を散布し、その後の期間はプランクを散布した。塩化鋼の土壌施用は土壌下に散布し、処理後中耕を行なった。
 4) 試験月日および方法
 10月15日実施のサビ果状の程度と夏果のグムポケットの発生および8字形病変の発生程度を調査した。

* 図芸試
*** 元紀南さん 証明センター事務
**** 継藤さん 証明センター
***** 松阪農業改良普及所

** 継南さん 証明センター

27
第1表 試験区および処理月日

<table>
<thead>
<tr>
<th>処理区</th>
<th>4月3日</th>
<th>4月22日</th>
<th>5月28日</th>
<th>6月26日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3月BWM</td>
<td>ボルドー</td>
<td>デラン</td>
<td>ボルドー</td>
<td>デラン</td>
</tr>
<tr>
<td>2 5月BWM</td>
<td>デラン</td>
<td>ボルドー</td>
<td>デラン</td>
<td>デラン</td>
</tr>
<tr>
<td>3 キノリンデー1回</td>
<td>キノリンデー</td>
<td>キノリンデー</td>
<td>キノリンデー</td>
<td>キノリンデー</td>
</tr>
<tr>
<td>4 キノリンデー3回</td>
<td>オキシラン</td>
<td>オキシラン</td>
<td>オキシラン</td>
<td>オキシラン</td>
</tr>
<tr>
<td>5 オキシラン3回</td>
<td>デラン十є1</td>
<td>デラン十є1</td>
<td>デラン十є1</td>
<td>デラン十є1</td>
</tr>
<tr>
<td>6 半1 3回</td>
<td>デラン</td>
<td>デラン</td>
<td>デラン</td>
<td>デラン</td>
</tr>
</tbody>
</table>

第2表 試験区および処理月日

<table>
<thead>
<tr>
<th>処理区</th>
<th>4月19日</th>
<th>5月26日</th>
<th>6月20日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5月BWM</td>
<td>デラン</td>
<td>ボルドー</td>
<td>デラン</td>
</tr>
<tr>
<td>2 キノリンデー1回</td>
<td>デラン</td>
<td>キノリンデー</td>
<td>デラン</td>
</tr>
<tr>
<td>3 キノリンデー3回</td>
<td>キノリンデー</td>
<td>キノリンデー</td>
<td>キノリンデー</td>
</tr>
<tr>
<td>4 オキシラン3回</td>
<td>オキシラン</td>
<td>オキシラン</td>
<td>オキシラン</td>
</tr>
<tr>
<td>5 慣行散布</td>
<td>デラン</td>
<td>デラン</td>
<td>デラン</td>
</tr>
</tbody>
</table>

11月20日に栽培した1樹当たり30株の春芽、夏芽の長さおよび春芽葉は1樹当たり30株の果葉の株ごと、収量を全収量について行なった。

5) 分析材料および分析成分

果実は11月29日に採取し品質調査を行なった。なお葉分析は4月19日と5月17日に行ない、9成分について行なったが試験では省略した。

(2) 処理散布剤利用試験

1) 供試樹および供試樹

3月31日に栽培した、出口氏園の5年生木本および青島系品種を供試し、両系統とも1区1樹3反復で行なった。

2) 供試樹および使用倍数

処理散布1回（硝酸銅100mg）は1000倍、2回散布剤2（硝酸銅1000mg）1000倍、石灰ボルドー液は5－5式、メルクデラン水和剤1000倍、葉面散布剤はデラン水和剤と毎年散布で行なった。

3) 処理区および散布月日

第3表に示す通りで、葉面散布の1回、2回散布とボルドー液散布を比較した。

第3表 試験区および処理月日

<table>
<thead>
<tr>
<th>処理区</th>
<th>4月23日</th>
<th>5月28日</th>
<th>6月27日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 半1 1回</td>
<td>デラン</td>
<td>デラン十є1</td>
<td>デラン</td>
</tr>
<tr>
<td>2. 半1 3回</td>
<td>デラン十є1</td>
<td>デラン十є1</td>
<td>デラン十є1</td>
</tr>
<tr>
<td>3. 半1 3回</td>
<td>デラン十є2</td>
<td>デラン十є1</td>
<td>デラン</td>
</tr>
<tr>
<td>4. 半1 3回</td>
<td>デラン十є3</td>
<td>デラン十є2</td>
<td>デラン</td>
</tr>
<tr>
<td>5. 半1 3回</td>
<td>デラン十є3</td>
<td>デラン十є3</td>
<td>デラン</td>
</tr>
<tr>
<td>6. 慣行散布</td>
<td>デラン</td>
<td>ボルドー</td>
<td>デラン</td>
</tr>
</tbody>
</table>
みの分析を行なった。
6) 果実の品質調査
11月21日に収穫後静岡、品質について行なった。
2) 銅、亜鉛の組合わせ試験
1) 供試園および供試樹
多気野試験園の金沢、藤吉野園の7年生樹と川松で欠乏症を生じている5年生の倍2樹4反復で試験を行なった。
2) 供試葉剤および使用倍数
葉面散布剤と3の1.00倍、2.00倍、1.00倍と
3) 供試区および散布月日
第5表に示す通りで、葉面散布剤は各時期とも、デラン水和剤を用いた。

第5表 試験区および処理月日
<table>
<thead>
<tr>
<th>処理区</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>銅1</td>
<td>銅1</td>
<td>銅1</td>
</tr>
<tr>
<td>2</td>
<td>銅2</td>
<td>銅3</td>
<td>銅3</td>
</tr>
<tr>
<td>3</td>
<td>銅3</td>
<td>銅4</td>
<td>銅5</td>
</tr>
<tr>
<td>4</td>
<td>銅4</td>
<td>鉛4</td>
<td>鉛5</td>
</tr>
<tr>
<td>5</td>
<td>鉛5</td>
<td>鉛5</td>
<td>鉛5</td>
</tr>
<tr>
<td>6</td>
<td>5月BM</td>
<td>デラン</td>
<td>ボルトール</td>
</tr>
<tr>
<td>7</td>
<td>オキシラン＋サンビン8号</td>
<td>オキサ</td>
<td>オキサ</td>
</tr>
<tr>
<td>8</td>
<td>銅銅散布</td>
<td>デラン</td>
<td>デラン</td>
</tr>
</tbody>
</table>

4) 植物生長および方法
耕直肥大は1970年3月30日と71年11月24日に設定し、春期の収穫および割検は70年10月24日と71年12月3日に調査した。
欠乏症状については、70年は11月24日と71年は11月8日に果実の発育状況および枝条の成長状況について行なった。同時期に71年には収穫枝条欠乏症が認められないので調査を行なった。
5) 分析材料および分析成分
葉分析はC、N、P、K、Ca、Mg、Mn、Fe、Cu、Zn、Bについて葉分析を行なった。
(3) 銅剤の隔年散布試験
1) 供試園および供試樹
多気野多気試験園、藤吉野園の7年生樹と川松で欠乏症を生じている5年生の倍2樹4反復で試験を行なった。
2) 供試葉剤および使用倍数
散布区の石灰ポルトール液は6-6-6式、5月散布の石灰ポルトール液は5-5-5式とオキシラン水和剤を1.00倍で供試した。
3) 供試区および散布月日
供試区および散布月日は第5表の通りで、隔年散布区は71年は銅銅散布区従来銅剤散布しなかった。
4）調査月日および方法
両作物および春収の長さ、幅については1970年3月30日、および71年は12月3日に調査した。
欠乏症は、果実のサビ症状を記録したゴムポケットおよびびねん根を根、1970年11月24日に、71年は11月6日に行なった。
5）分析試料および分析方法
春収について、処理前の1970年3月30日と処理後の9月17日、71年3月30日、9月3日、8日にCu、Znについて葉分析を行なった。

4. 土壌処理試験
5）分析試料および分析方法
土壌は、処理前の4月25日と処理後の10月17日に土壤別の採取をした。処理は、処理前の4月25日と処理後の10月17日に採集し、N、P、K、Ca、Mgを分析を行なった。

(5) 分析方法
A：カーティル法によって。
B：ディフェスコ法（比色）によって。
K、Ca、Mg、Mn、Fe、Cu、Zn: 原子吸光分析法
(日立バーチャル型305型）によって。
B：クルクミン法によって。

<table>
<thead>
<tr>
<th>総 計</th>
<th>てんびん</th>
<th>てんびん</th>
<th>てんびん</th>
<th>てんびん</th>
<th>てんびん</th>
<th>てんびん</th>
<th>てんびん</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3月</td>
<td>5月</td>
<td>6月</td>
<td>8月</td>
<td>10月</td>
<td>12月</td>
<td>1月</td>
</tr>
<tr>
<td>2</td>
<td>3月</td>
<td>5月</td>
<td>6月</td>
<td>8月</td>
<td>10月</td>
<td>12月</td>
<td>1月</td>
</tr>
<tr>
<td>3</td>
<td>3月</td>
<td>5月</td>
<td>6月</td>
<td>8月</td>
<td>10月</td>
<td>12月</td>
<td>1月</td>
</tr>
<tr>
<td>4</td>
<td>3月</td>
<td>5月</td>
<td>6月</td>
<td>8月</td>
<td>10月</td>
<td>12月</td>
<td>1月</td>
</tr>
<tr>
<td>5</td>
<td>3月</td>
<td>5月</td>
<td>6月</td>
<td>8月</td>
<td>10月</td>
<td>12月</td>
<td>1月</td>
</tr>
<tr>
<td>6</td>
<td>3月</td>
<td>5月</td>
<td>6月</td>
<td>8月</td>
<td>10月</td>
<td>12月</td>
<td>1月</td>
</tr>
<tr>
<td>7</td>
<td>3月</td>
<td>5月</td>
<td>6月</td>
<td>8月</td>
<td>10月</td>
<td>12月</td>
<td>1月</td>
</tr>
</tbody>
</table>

第4表 試験区および処理方法

<table>
<thead>
<tr>
<th>処 理</th>
<th>1.2.</th>
<th>3.4.</th>
<th>5.6.</th>
<th>7.8.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.</td>
<td>125g</td>
<td>125g</td>
<td>125g</td>
<td>125g</td>
</tr>
<tr>
<td>3.4.</td>
<td>25g</td>
<td>25g</td>
<td>25g</td>
<td>25g</td>
</tr>
<tr>
<td>5.6.</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
</tr>
</tbody>
</table>

試験結果
1. 各種剤防試験
a. 欠乏対策効果試験
(i) 塩の生育状況
1) 両作物：両作物は第4表に示したとおりで、
剤防試験と対照区に対して処理区は、やや肥大が増加
している。中でも発芽期より散布した3月B区、
キドリ＝3区、オキシカン3区、え1、3
区がより高まっている。
2) 根の生育状況：植株、夏収とも剤防無散布はやや短
かい傾向であるが、散布各区分間では、つきりした
傾向はみられなかった。
3) 早収および調幅：第4表のとおりで大差はみられ
ないが、やや夏収が欠乏症の発生したものは短
<table>
<thead>
<tr>
<th>処理区</th>
<th>幹周処理前</th>
<th>幹周処理後</th>
<th>肥大率</th>
<th>足枝長</th>
<th>春枝長</th>
<th>秋枝長</th>
<th>サビ収量</th>
<th>収量（1樹あたり）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3月BWM</td>
<td>14.9</td>
<td>17.5</td>
<td>117</td>
<td>8.4</td>
<td>40.5</td>
<td>-</td>
<td>868</td>
<td>868</td>
</tr>
<tr>
<td>2 5月BWM</td>
<td>17.5</td>
<td>20.1</td>
<td>115</td>
<td>11.8</td>
<td>40.4</td>
<td>-</td>
<td>973</td>
<td>973</td>
</tr>
<tr>
<td>3 キノリンード-1回</td>
<td>17.5</td>
<td>19.8</td>
<td>118</td>
<td>12.1</td>
<td>40.0</td>
<td>16.62</td>
<td>911</td>
<td>911</td>
</tr>
<tr>
<td>4 キノリンード-3回</td>
<td>16.5</td>
<td>19.2</td>
<td>116</td>
<td>8.7</td>
<td>26.9</td>
<td>11.02</td>
<td>684</td>
<td>684</td>
</tr>
<tr>
<td>5 オキシラント3回</td>
<td>16.9</td>
<td>19.6</td>
<td>116</td>
<td>12.8</td>
<td>36.3</td>
<td>20.49</td>
<td>956</td>
<td>956</td>
</tr>
<tr>
<td>6 水1回</td>
<td>18.2</td>
<td>21.2</td>
<td>116</td>
<td>11.6</td>
<td>36.9</td>
<td>8.31</td>
<td>983</td>
<td>983</td>
</tr>
<tr>
<td>7 硫酸銅施用</td>
<td>17.1</td>
<td>19.5</td>
<td>114</td>
<td>15.1</td>
<td>29.1</td>
<td>-</td>
<td>899</td>
<td>899</td>
</tr>
<tr>
<td>8 鍼剤無散布</td>
<td>16.3</td>
<td>18.4</td>
<td>113</td>
<td>8.2</td>
<td>26.8</td>
<td>-</td>
<td>971</td>
<td>971</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>処理区</th>
<th>幹周処理前</th>
<th>幹周処理後</th>
<th>肥大率</th>
<th>足枝長</th>
<th>春枝長</th>
<th>秋枝長</th>
<th>サビ収量</th>
<th>収量（1樹あたり）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3月BWM</td>
<td>16.2</td>
<td>19.3</td>
<td>119</td>
<td>14.5</td>
<td>50.2</td>
<td>10.52</td>
<td>873</td>
<td>873</td>
</tr>
<tr>
<td>2 5月BWM</td>
<td>17.2</td>
<td>19.9</td>
<td>115</td>
<td>15.2</td>
<td>38.2</td>
<td>10.52</td>
<td>940</td>
<td>940</td>
</tr>
<tr>
<td>3 キノリンード-1回</td>
<td>17.4</td>
<td>20.3</td>
<td>117</td>
<td>11.3</td>
<td>39.3</td>
<td>12.72</td>
<td>1128</td>
<td>1128</td>
</tr>
<tr>
<td>4 キノリンード-3回</td>
<td>17.5</td>
<td>20.3</td>
<td>116</td>
<td>13.4</td>
<td>31.4</td>
<td>8.53</td>
<td>1113</td>
<td>1113</td>
</tr>
<tr>
<td>5 オキシラント3回</td>
<td>18.0</td>
<td>20.9</td>
<td>116</td>
<td>13.0</td>
<td>37.6</td>
<td>11.27</td>
<td>828</td>
<td>828</td>
</tr>
<tr>
<td>6 水1回</td>
<td>18.2</td>
<td>21.1</td>
<td>116</td>
<td>11.9</td>
<td>29.1</td>
<td>14.68</td>
<td>983</td>
<td>983</td>
</tr>
<tr>
<td>7 硫酸銅施用</td>
<td>17.0</td>
<td>19.4</td>
<td>114</td>
<td>13.1</td>
<td>43.7</td>
<td>18.83</td>
<td>945</td>
<td>945</td>
</tr>
<tr>
<td>8 鍼剤無散布</td>
<td>17.0</td>
<td>19.4</td>
<td>114</td>
<td>13.1</td>
<td>43.7</td>
<td>18.83</td>
<td>945</td>
<td>945</td>
</tr>
</tbody>
</table>

かい傾向を示し、葉長：葉幅比では5月BWM区が高く、鍼剤無散布区が低くなっている。
4）収量：鍼剤無散布区が極端に少なく、1果平均重量も小さかったが、他区ではつまりした傾向はみられなかった。

(2) 池虫症の発生

<table>
<thead>
<tr>
<th>処理区</th>
<th>調査項目</th>
<th>果実のサビ状</th>
<th>夏枝梢の状態</th>
<th>伸長度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3月BWM</td>
<td>調査果数</td>
<td>発生率</td>
<td>発生数</td>
<td>ゴムポケット</td>
</tr>
<tr>
<td>2 5月BWM</td>
<td>86ヶ</td>
<td>5</td>
<td>0</td>
<td>無</td>
</tr>
<tr>
<td>3 キノリンード-1回</td>
<td>85</td>
<td>6</td>
<td>0</td>
<td>中</td>
</tr>
<tr>
<td>4 キノリンード-3回</td>
<td>105</td>
<td>16.2</td>
<td>5.4</td>
<td>中</td>
</tr>
<tr>
<td>5 オキシラント3回</td>
<td>88</td>
<td>6.8</td>
<td>1.1</td>
<td>中</td>
</tr>
<tr>
<td>6 水1回</td>
<td>150</td>
<td>5.3</td>
<td>0.8</td>
<td>中</td>
</tr>
<tr>
<td>7 硫酸銅施用</td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>中</td>
</tr>
<tr>
<td>8 鍼剤無散布</td>
<td>81</td>
<td>2.6</td>
<td>8.7</td>
<td>中</td>
</tr>
</tbody>
</table>

1）果実：サビ状の発生は第2表の通りで、鍼剤無散布区の発生率は処理区被被害枝樹で100％、枝樹で21％発生であったのに対し、3月BWM区、5月BWM区、水1区は被害枝樹でも認められなかったが、硫酸銅施用区、キノリンードおよびオキシラント散布区では発生した。
2) 夏秋植1ゴムポケットの発生は、5月B区と高
1区は発生せず、処理前被害程度でも鋼銅鋼銅施用区
と銅剤無散布区のみ少数であるが発生した。
S字型のねん曲は、全区に見られたが5月B区
はさわめて少なく、鋼銅無散布区は全校がねん曲し
ていた。また鋼銅無散布区と鋼銅銅銅施用区は枝葉が
萎縮症状を呈していた。

(3) 果実調査および果実分析
1) 果実調査：調査結果は第11表のとおり、銅剤無散布
区が果皮色が高く、果肉歩合も著る傾向を示し、酸
含合は5月B区がわずかに高く、鋼銅無散布区が低
い傾向を示した。

第10表 処理別果実調査

<table>
<thead>
<tr>
<th>処理区</th>
<th>1果平均重</th>
<th>果形指数</th>
<th>果皮色</th>
<th>果肉歩合</th>
<th>固有固</th>
<th>酸度</th>
<th>甘味比</th>
</tr>
</thead>
<tbody>
<tr>
<td>处理1</td>
<td>3月B区</td>
<td>8.88</td>
<td>1.20</td>
<td>8</td>
<td>3.08</td>
<td>71</td>
<td>1.08</td>
</tr>
<tr>
<td>处理2</td>
<td>5月B区</td>
<td>11.03</td>
<td>1.11</td>
<td>9</td>
<td>2.78</td>
<td>72</td>
<td>1.0</td>
</tr>
<tr>
<td>前</td>
<td>3キリンドリ-1回</td>
<td>9.66</td>
<td>1.27</td>
<td>9</td>
<td>3.24</td>
<td>69</td>
<td>1.08</td>
</tr>
<tr>
<td>被</td>
<td>4キリンドリ-3回</td>
<td>10.16</td>
<td>1.21</td>
<td>8</td>
<td>3.33</td>
<td>71</td>
<td>1.08</td>
</tr>
<tr>
<td>害</td>
<td>5オキシラン-3回</td>
<td>11.20</td>
<td>1.20</td>
<td>9</td>
<td>3.16</td>
<td>71</td>
<td>1.05</td>
</tr>
<tr>
<td>基</td>
<td>6以前</td>
<td>11.49</td>
<td>1.19</td>
<td>10</td>
<td>3.54</td>
<td>69</td>
<td>1.05</td>
</tr>
<tr>
<td>植</td>
<td>7硫酸銅施用</td>
<td>10.10</td>
<td>1.12</td>
<td>8</td>
<td>3.73</td>
<td>68</td>
<td>9.6</td>
</tr>
<tr>
<td>輔</td>
<td>8鋼銅無散布</td>
<td>8.04</td>
<td>1.16</td>
<td>4</td>
<td>3.47</td>
<td>66</td>
<td>1.03</td>
</tr>
</tbody>
</table>

注：可溶性固形物、酸度はクエン酸添加、以下同じ。

2) 果実分析：分析結果は第11表のとおり、欠乏の
著しい鋼銅無散布区および発生の少ない硫酸銅施用
区と欠乏症状の認められない5月B区を比較すると、

第11表 ボルドーおよび硫酸銅施用区の果実成分

<table>
<thead>
<tr>
<th>処理区</th>
<th>S</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>果基</td>
<td>7月B区</td>
<td>1.02</td>
<td>767 ppm</td>
<td>0.80%</td>
<td>0.41%</td>
<td>996 ppm</td>
<td>5.8 ppm</td>
</tr>
<tr>
<td>8無処理</td>
<td>1.24</td>
<td>1050 ppm</td>
<td>1.08</td>
<td>0.27</td>
<td>729</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>皮筋</td>
<td>7月B区</td>
<td>1.04</td>
<td>822 ppm</td>
<td>0.80</td>
<td>0.35</td>
<td>772</td>
<td>4.8</td>
</tr>
<tr>
<td>8無処理</td>
<td>0.95</td>
<td>716 ppm</td>
<td>0.94</td>
<td>0.36</td>
<td>796</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>果基</td>
<td>7月B区</td>
<td>0.134</td>
<td>167</td>
<td>0.13</td>
<td>0.014</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>8無処理</td>
<td>0.141</td>
<td>172</td>
<td>0.15</td>
<td>0.013</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>肉筋</td>
<td>7月B区</td>
<td>0.126</td>
<td>187</td>
<td>0.15</td>
<td>0.007</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>8無処理</td>
<td>0.129</td>
<td>177</td>
<td>0.16</td>
<td>0.011</td>
<td>94</td>
<td>(注) 果皮-乾物中</td>
<td></td>
</tr>
</tbody>
</table>

(4) 業分析
1) Cu：第12表に示すとおり、銅剤無散布区は
処理前被害程度で、25～50 ppmの範囲で低く、時
期的には、4月の間隔より5月の緑化期の頃が全
般に高くなっている。また8月上旬より下旬、8月
上旬の値が特に低くなっている。
5月の分析値は、3月、4月に鋼銅を散布した
3月B区、キリンドリ-3回区、高1区が高い値
を示し、6月分析では5月にボルドー液を散布した
5月B区が極めて高い値を示した。8月の分析値
では3月B区、5月B区、高1区以外は4 ppm
以下で低く、硫酸銅施用区、全期間とも銅剤無散布
区と大差ない内容であった。
2) Zn：第13表のとおり、5月には全般にやや
高い値を示したが、その他の時期は20～30 ppm
とやや高正値より低値を示していた。処理区間で
第12表 処理区における時期別葉中の鉄含量 (ppm)

<table>
<thead>
<tr>
<th>処理区</th>
<th>採葉時期</th>
<th>処理前</th>
<th>第1回1ヶ月後</th>
<th>第2回1ヶ月後</th>
<th>第3回1ヶ月後</th>
<th>終了4ヶ月後</th>
</tr>
</thead>
<tbody>
<tr>
<td>剤</td>
<td>3月B M</td>
<td>5.5</td>
<td>17.0</td>
<td>4.0</td>
<td>6.0</td>
<td>6.7</td>
</tr>
<tr>
<td>理</td>
<td>4月B M</td>
<td>3.0</td>
<td>9.0</td>
<td>4.0</td>
<td>1.06</td>
<td>2.00</td>
</tr>
<tr>
<td>前</td>
<td>5月B M</td>
<td>3.5</td>
<td>9.0</td>
<td>3.9</td>
<td>2.0</td>
<td>7.0</td>
</tr>
<tr>
<td>被</td>
<td>6月B M</td>
<td>3.5</td>
<td>12.0</td>
<td>3.5</td>
<td>3.8</td>
<td>9.0</td>
</tr>
<tr>
<td>害</td>
<td>7月B M</td>
<td>3.5</td>
<td>5.0</td>
<td>3.9</td>
<td>3.2</td>
<td>8.4</td>
</tr>
<tr>
<td>案</td>
<td>8月B M</td>
<td>2.5</td>
<td>13.0</td>
<td>9.0</td>
<td>15.4</td>
<td>13.3</td>
</tr>
<tr>
<td>業</td>
<td>9月B M</td>
<td>2.5</td>
<td>7.0</td>
<td>4.4</td>
<td>3.2</td>
<td>4.5</td>
</tr>
<tr>
<td>絡</td>
<td>10月B M</td>
<td>2.5</td>
<td>5.0</td>
<td>4.0</td>
<td>3.8</td>
<td>5.0</td>
</tr>
</tbody>
</table>

第13表 処理区における時期別葉中の亜鉛含量 (ppm)

<table>
<thead>
<tr>
<th>処理区</th>
<th>採葉時期</th>
<th>処理前</th>
<th>第1回1ヶ月後</th>
<th>第2回1ヶ月後</th>
<th>第3回1ヶ月後</th>
<th>終了4ヶ月後</th>
</tr>
</thead>
<tbody>
<tr>
<td>剤</td>
<td>3月B M</td>
<td>4.5</td>
<td>12.0</td>
<td>6.0</td>
<td>1.00</td>
<td>8.5</td>
</tr>
<tr>
<td>理</td>
<td>4月B M</td>
<td>2.7</td>
<td>17.0</td>
<td>1.27</td>
<td>1.20</td>
<td>12.2</td>
</tr>
<tr>
<td>前</td>
<td>5月B M</td>
<td>3.5</td>
<td>9.0</td>
<td>6.0</td>
<td>2.8</td>
<td>6.7</td>
</tr>
<tr>
<td>被</td>
<td>6月B M</td>
<td>3.5</td>
<td>12.0</td>
<td>4.4</td>
<td>4.0</td>
<td>8.3</td>
</tr>
<tr>
<td>害</td>
<td>7月B M</td>
<td>3.5</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.9</td>
</tr>
<tr>
<td>案</td>
<td>8月B M</td>
<td>3.5</td>
<td>14.0</td>
<td>9.4</td>
<td>13.8</td>
<td>11.5</td>
</tr>
<tr>
<td>業</td>
<td>9月B M</td>
<td>3.5</td>
<td>9.0</td>
<td>4.8</td>
<td>4.6</td>
<td>7.2</td>
</tr>
<tr>
<td>絡</td>
<td>10月B M</td>
<td>3.5</td>
<td>7.0</td>
<td>4.0</td>
<td>4.2</td>
<td>5.0</td>
</tr>
</tbody>
</table>

は時期的にふれが多く明らかな差は見られないが、
5月B M 区、前1区、硫酸銅施用区がわずかに高く、
銅剤無散布区が低い傾向であった。

（6）土壌分析結果

3）その他の成分、第14〜15表のとおりで、Nは
銅剤無散布区がわずかに高く、Ca, Woが銅剤無散布
処理区の未耕土および硫酸銅施用区と銅剤無散布区の
分析は第16表に示すとおりで、PHは未耕土に比較
第14表 処理直前の集中成分

<table>
<thead>
<tr>
<th>処理区</th>
<th>多量要素 (%)</th>
<th>質量要素 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>1 3月W</td>
<td>3.23</td>
<td>0.238</td>
</tr>
<tr>
<td>2 5月W</td>
<td>3.07</td>
<td>0.201</td>
</tr>
<tr>
<td>3 キノリンド1回</td>
<td>2.97</td>
<td>0.193</td>
</tr>
<tr>
<td>4 キノリンド3回</td>
<td>3.11</td>
<td>0.203</td>
</tr>
<tr>
<td>5 オキシラン1回</td>
<td>2.76</td>
<td>0.189</td>
</tr>
<tr>
<td>6 オキシラン3回</td>
<td>3.14</td>
<td>0.177</td>
</tr>
<tr>
<td>7 硫酸銅施用</td>
<td>3.04</td>
<td>0.171</td>
</tr>
<tr>
<td>8 鋼製無散布</td>
<td>3.28</td>
<td>0.204</td>
</tr>
<tr>
<td>1 3月W</td>
<td>3.22</td>
<td>0.229</td>
</tr>
<tr>
<td>2 5月W</td>
<td>3.19</td>
<td>0.187</td>
</tr>
<tr>
<td>3 キノリンド1回</td>
<td>2.96</td>
<td>0.202</td>
</tr>
<tr>
<td>4 キノリンド3回</td>
<td>2.87</td>
<td>0.209</td>
</tr>
<tr>
<td>5 オキシラン1回</td>
<td>3.10</td>
<td>0.189</td>
</tr>
<tr>
<td>6 オキシラン3回</td>
<td>3.14</td>
<td>0.175</td>
</tr>
<tr>
<td>7 硫酸銅施用</td>
<td>3.01</td>
<td>0.164</td>
</tr>
<tr>
<td>8 鋼製無散布</td>
<td>3.05</td>
<td>0.182</td>
</tr>
</tbody>
</table>

第15表 処理後の集中成分

<table>
<thead>
<tr>
<th>処理区</th>
<th>多量要素 (%)</th>
<th>質量要素 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>1 3月W</td>
<td>3.43</td>
<td>0.185</td>
</tr>
<tr>
<td>2 5月W</td>
<td>3.30</td>
<td>0.179</td>
</tr>
<tr>
<td>3 キノリンド1回</td>
<td>3.39</td>
<td>0.129</td>
</tr>
<tr>
<td>4 キノリンド3回</td>
<td>3.12</td>
<td>0.190</td>
</tr>
<tr>
<td>5 オキシラン1回</td>
<td>3.33</td>
<td>0.200</td>
</tr>
<tr>
<td>6 オキシラン3回</td>
<td>3.50</td>
<td>0.187</td>
</tr>
<tr>
<td>7 硫酸銅施用</td>
<td>3.15</td>
<td>0.238</td>
</tr>
<tr>
<td>8 鋼製無散布</td>
<td>3.52</td>
<td>0.175</td>
</tr>
<tr>
<td>1 3月W</td>
<td>3.24</td>
<td>0.170</td>
</tr>
<tr>
<td>2 5月W</td>
<td>3.28</td>
<td>0.168</td>
</tr>
<tr>
<td>3 キノリンド1回</td>
<td>3.31</td>
<td>0.196</td>
</tr>
<tr>
<td>4 キノリンド3回</td>
<td>3.14</td>
<td>0.214</td>
</tr>
<tr>
<td>5 オキシラン1回</td>
<td>3.35</td>
<td>0.190</td>
</tr>
<tr>
<td>6 オキシラン3回</td>
<td>3.10</td>
<td>0.188</td>
</tr>
<tr>
<td>7 硫酸銅施用</td>
<td>3.26</td>
<td>0.148</td>
</tr>
<tr>
<td>8 鋼製無散布</td>
<td>3.36</td>
<td>0.175</td>
</tr>
</tbody>
</table>

これにより処理区全体は高くなっているが、処理区間では硫酸銅施用区の方が多い。また、処理区間とも表層が高く、15~35 cm下部が低い。
第16表 硫酸鋼施用区の土壌調査

<table>
<thead>
<tr>
<th>採用場所</th>
<th>用途</th>
<th>P (ppm)</th>
<th>N (ppm)</th>
<th>Fe (ppm)</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>未耕土</td>
<td>15-20</td>
<td>4.0</td>
<td>0.01</td>
<td>0.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>4.4</td>
<td>0.10</td>
<td>1.5</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>4.1</td>
<td>0.01</td>
<td>0.5</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>4.7</td>
<td>0.09</td>
<td>0.8</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>4.2</td>
<td>0.03</td>
<td>0.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>4.1</td>
<td>0.01</td>
<td>0.8</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第17表 処理区の果皮の病発

<table>
<thead>
<tr>
<th>処理区</th>
<th>調査項目</th>
<th>春</th>
<th>裁判</th>
<th>過度</th>
<th>発病率</th>
<th>発病度</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月B</td>
<td>1100</td>
<td>4.1%</td>
<td>150</td>
<td>100</td>
<td>40%</td>
<td>0.7%</td>
</tr>
<tr>
<td>2キモノリドー-1回</td>
<td>1100</td>
<td>1.5%</td>
<td>150</td>
<td>5</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td>3キモノリドー-3回</td>
<td>1100</td>
<td>5.7</td>
<td>150</td>
<td>31.3</td>
<td>8.7</td>
<td>0</td>
</tr>
<tr>
<td>4オキシラン</td>
<td>1100</td>
<td>3.6</td>
<td>150</td>
<td>14.7</td>
<td>7.7</td>
<td>0</td>
</tr>
<tr>
<td>5慣行散布</td>
<td>1100</td>
<td>0.6</td>
<td>150</td>
<td>3.7</td>
<td>0.7</td>
<td>0</td>
</tr>
</tbody>
</table>

発病度 = (少×1 + 中×3 + 多×6) ÷ (n×6) × 100

(2) 果実調査

第18表 鍋製剤反应

<table>
<thead>
<tr>
<th>処理区</th>
<th>1果平均</th>
<th>果粒数</th>
<th>果軸比重</th>
<th>果軸皮厚</th>
<th>果肉歩合</th>
<th>可</th>
<th>酸</th>
<th>甘味比</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月B</td>
<td>11.86</td>
<td>1.33</td>
<td>0.89</td>
<td>3.7mm</td>
<td>74.7%</td>
<td>11.7</td>
<td>0.99</td>
<td>11.9</td>
</tr>
<tr>
<td>2キモノリドー-1回</td>
<td>11.56</td>
<td>1.38</td>
<td>0.84</td>
<td>3.8</td>
<td>7.1</td>
<td>11.3</td>
<td>0.79</td>
<td>14.3</td>
</tr>
<tr>
<td>3キモノリドー-3回</td>
<td>11.96</td>
<td>1.36</td>
<td>0.84</td>
<td>3.4</td>
<td>7.08</td>
<td>11.3</td>
<td>0.77</td>
<td>14.7</td>
</tr>
<tr>
<td>4オキシラン</td>
<td>11.22</td>
<td>1.35</td>
<td>0.88</td>
<td>3.0</td>
<td>7.39</td>
<td>11.5</td>
<td>0.82</td>
<td>14.0</td>
</tr>
<tr>
<td>5慣行散布</td>
<td>11.67</td>
<td>1.31</td>
<td>0.87</td>
<td>3.5</td>
<td>7.29</td>
<td>11.3</td>
<td>0.83</td>
<td>12.7</td>
</tr>
</tbody>
</table>

(2) 鍋製剤利用試験

(1) 散布区の発生

1) 果実: サビ状態の発生は第16表のとおりで米沢
温州には生じて認められず、青島温州に生じたが
軽症であった。各試料の3回区、1回区は、発
生が認められないが発生してもきわめてわずかであ
り、各3、各4の1回区はやや多くなっているが、鍍
製剤散布区より発生は少ないとなっている。

2) 夏秋期: 疫症の発生は、ゴムボケットが鍍製無
散布区において米沢温州が全枝の21.9%、青島温
州が4.8%の発生率であったのに対し、各処理区
には発生を認めなかった。また8字のねと曲枝は、
鍍製無散布区に比して少なくなっているが、特に
1、3の3回散布区ははかめて少なくないている。

3) 鍍製剤による発生：鍍製剤散布区の1区、3区、ポルトアル
区ともはほとんど同程度の発生を認めめた。

(2) 果実調査

効果の高かった鍍製散布区と鍍製無散布区の果実
調査は第20表のとおりで、鍍製無散布区は着色が
極めて悪く、果皮も厚かった。糖、酸は各3の3回
区からやや高い傾向を示した。

(3) 果実

1) 鍍製散布および青島温州の発生量は第21表
に示すとおりで、処理区に比し、1回区、3回区と
第19表 欠乏症および栄養の発生状況

<table>
<thead>
<tr>
<th>調査項目</th>
<th>米種</th>
<th>青島種</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>果実の栄養</td>
<td>枝付の被害</td>
</tr>
<tr>
<td></td>
<td>発生度</td>
<td>ゴムケット</td>
</tr>
<tr>
<td>1.</td>
<td>亀11回</td>
<td>0 %</td>
</tr>
<tr>
<td>2.</td>
<td>亀13回</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>亀31回</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>亀33回</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>5月BM</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>銅剤無散布</td>
<td>0</td>
</tr>
</tbody>
</table>

第20表 亀33回の結果観察

<table>
<thead>
<tr>
<th>処理区</th>
<th>1果平均重</th>
<th>果形指数</th>
<th>果皮色</th>
<th>果肉厚</th>
<th>果肉歩合</th>
<th>可,固,酸</th>
<th>甘味比</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>亀33回</td>
<td>138 g</td>
<td>1.16</td>
<td>9</td>
<td>34.2 mm</td>
<td>75 %</td>
<td>90 %</td>
</tr>
<tr>
<td>6.</td>
<td>銅剤無散布</td>
<td>144</td>
<td>1.16</td>
<td>4</td>
<td>36.5 mm</td>
<td>74</td>
<td>8.1</td>
</tr>
</tbody>
</table>

第21表 処理区における時期別葉中の銅含量（ppm）

<table>
<thead>
<tr>
<th>処理区</th>
<th>1果平均重</th>
<th>果形指数</th>
<th>果皮色</th>
<th>果肉厚</th>
<th>果肉歩合</th>
<th>可,固,酸</th>
<th>甘味比</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>亀33回</td>
<td>138 g</td>
<td>1.16</td>
<td>9</td>
<td>34.2 mm</td>
<td>75 %</td>
<td>90 %</td>
</tr>
<tr>
<td>6.</td>
<td>銅剤無散布</td>
<td>144</td>
<td>1.16</td>
<td>4</td>
<td>36.5 mm</td>
<td>74</td>
<td>8.1</td>
</tr>
</tbody>
</table>

第22表 処理区における時期別葉中の亜鉛含量（ppm）

<table>
<thead>
<tr>
<th>処理区</th>
<th>1果平均重</th>
<th>果形指数</th>
<th>果皮色</th>
<th>果肉厚</th>
<th>果肉歩合</th>
<th>可,固,酸</th>
<th>甘味比</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>亀33回</td>
<td>138 g</td>
<td>1.16</td>
<td>9</td>
<td>34.2 mm</td>
<td>75 %</td>
<td>90 %</td>
</tr>
<tr>
<td>6.</td>
<td>銅剤無散布</td>
<td>144</td>
<td>1.16</td>
<td>4</td>
<td>36.5 mm</td>
<td>74</td>
<td>8.1</td>
</tr>
</tbody>
</table>
も含量は増加しており、3区は5月B区と同程度の値を示した。1区と3区ではやや鉄鉱を含みながら、市3区が低い傾向である。
2) Zn: 第22表のとおりで、処理前の全鉱含量は低い傾向であったが、市3区は処理後は適正値に上るか、市1区および5月B区は鋼割無散布区と明らかに差が認められなかった。
3) その他の成分: 第28～24表に示すとおりで、市3区は鋼割無散布区にやや高い傾向を示されただけで、その他の成分では、明らかに差は認められなかった。

<table>
<thead>
<tr>
<th>処理区</th>
<th>成分</th>
<th>多量元素 (％)</th>
<th>微量元素 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>3.16</td>
<td>0.219</td>
<td>2.15</td>
</tr>
<tr>
<td>2</td>
<td>3.07</td>
<td>0.188</td>
<td>2.80</td>
</tr>
<tr>
<td>3</td>
<td>3.01</td>
<td>0.280</td>
<td>2.60</td>
</tr>
<tr>
<td>4</td>
<td>3.18</td>
<td>0.208</td>
<td>2.30</td>
</tr>
<tr>
<td>5</td>
<td>3.12</td>
<td>0.274</td>
<td>2.15</td>
</tr>
<tr>
<td>6</td>
<td>3.01</td>
<td>0.183</td>
<td>2.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>処理区</th>
<th>成分</th>
<th>多量元素 (％)</th>
<th>微量元素 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>3.08</td>
<td>0.196</td>
<td>2.20</td>
</tr>
<tr>
<td>2</td>
<td>3.00</td>
<td>0.179</td>
<td>2.30</td>
</tr>
<tr>
<td>3</td>
<td>2.87</td>
<td>0.191</td>
<td>2.32</td>
</tr>
<tr>
<td>4</td>
<td>3.17</td>
<td>0.171</td>
<td>2.40</td>
</tr>
<tr>
<td>5</td>
<td>3.12</td>
<td>0.231</td>
<td>2.30</td>
</tr>
<tr>
<td>6</td>
<td>2.96</td>
<td>0.193</td>
<td>2.20</td>
</tr>
</tbody>
</table>

第23表 処理前の葉中成分

第24表 処理後の葉中成分

a) 鉄、亜鉛の組合せ試験

1) 生育調査
1) 幹周、幹周肥育率は第25表に示すとおりで、鉄
鉱を用いない鋼割無散布区と市5区がわずかに劣
り市3区がやや高い傾向であった。
2) 両葉長の変化は市1区、市2区、市3区が長い傾向
であり、葉長: 草葉比は市1区、5月B区、鋼割
無散布区のような葉長を含むしていない鋼割を使用し
た区が鋼割無散布区が低い傾向を示したが、明らかにか
のでなかった。
3) 果実の着色: 1970年は、着色度が市4区とオキ
ャル果実サビ2号区に綠色が多く、市5区と鋼
割無散布区は青色のまま、ただ人色にはならなか
かった。1971年には、各区間に明らかに差は認め
<table>
<thead>
<tr>
<th>試験区</th>
<th>幹周数</th>
<th>肥大率</th>
<th>70年</th>
<th>71年</th>
<th>養長</th>
<th>欠乏症発生率</th>
<th>果実の着色率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>16.3</td>
<td>21.5</td>
<td>132</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
<tr>
<td>2.0</td>
<td>15.9</td>
<td>22.9</td>
<td>132</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
<tr>
<td>3.0</td>
<td>15.9</td>
<td>21.4</td>
<td>135</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
<tr>
<td>4.0</td>
<td>15.9</td>
<td>21.4</td>
<td>135</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
<tr>
<td>5.0</td>
<td>14.1</td>
<td>21.4</td>
<td>135</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
<tr>
<td>石灰キルト液</td>
<td>14.9</td>
<td>21.4</td>
<td>135</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
<tr>
<td>オキシリン+サンビ3</td>
<td>16.1</td>
<td>21.4</td>
<td>135</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
<tr>
<td>銅剤無散布</td>
<td>16.2</td>
<td>21.4</td>
<td>135</td>
<td>9.6</td>
<td>2.11</td>
<td>2.05</td>
<td>7.0</td>
</tr>
</tbody>
</table>

(2) 欠乏症
1) 果実：サビ症状の汚染果の発生は第26表のとおりで、1970年は1区、2区、3区、オキシリン+サンビ3号区、銅剤無散布区にみられた。1971年は銅剤無散布区のみ発生が全数に確認されなかった。

<table>
<thead>
<tr>
<th>試験区</th>
<th>ゴムポケット</th>
<th>果実の汚染程度</th>
<th>1970</th>
<th>1971</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>無</td>
<td>無</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>2.0</td>
<td>無</td>
<td>無</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>3.0</td>
<td>無</td>
<td>無</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>4.0</td>
<td>無</td>
<td>無</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>5.0</td>
<td>無</td>
<td>無</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>石灰キルト液</td>
<td>無</td>
<td>無</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>オキシリン+サンビ3</td>
<td>微</td>
<td>微</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>銅剤無散布</td>
<td>中</td>
<td>中</td>
<td>5.6</td>
<td>3.4</td>
</tr>
</tbody>
</table>

3) 亜鉛の欠乏：1971年にオキシリン+サンビ3号区と銅剤無散布区の春葉にわずかであるが亜鉛欠乏の症状が認められた。

(3) 観察
1) ゴムの分析結果は第27表のとおりで、1970年より71年の方が全般に含量が高い。亜鉛の含量は5月の分析値が高く、7月が低くなっている。各区の値は5月B.M.区が全期間を通じて高く、A.I区、N.2区、A.8区も含量は高まっているが5月B.M.区よりも低く、銅を含まない1区でもわずかであるが、銅剤無散布区より高い傾向であった。

2) 反し第28表に示すとおり、合計は全般に低く銅剤無散布区では欠乏症に近い値であった。経時的には6～7月に低くなる傾向があり、1970年より71年の方が低い値となっている。処理区では、1区、2区、3区、4区、5区が、銅剤無散布区の約2倍の含量を示し、他の区でも、わずかに多くなつている。
第27表 1970年、1971年における時期別葉中の銅合量

<table>
<thead>
<tr>
<th>試験区</th>
<th>1970年</th>
<th>1971年</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8月</td>
<td>6月</td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>写1</td>
<td>3.3</td>
<td>6.1</td>
</tr>
<tr>
<td>写2</td>
<td>3.3</td>
<td>9.8</td>
</tr>
<tr>
<td>写3</td>
<td>4.2</td>
<td>3.8</td>
</tr>
<tr>
<td>写4</td>
<td>3.2</td>
<td>7.8</td>
</tr>
<tr>
<td>写5</td>
<td>2.9</td>
<td>7.0</td>
</tr>
<tr>
<td>石灰粉液</td>
<td>1.8</td>
<td>9.4</td>
</tr>
<tr>
<td>オキシラン+サンビ3号</td>
<td>1.4</td>
<td>9.8</td>
</tr>
<tr>
<td>銅剤無散布</td>
<td>3.2</td>
<td>6.4</td>
</tr>
</tbody>
</table>

第28表 1970年、1971年における時期別葉中の亜鉛合量

<table>
<thead>
<tr>
<th>試験区</th>
<th>1970年</th>
<th>1971年</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8月</td>
<td>6月</td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>写1</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>写2</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>写3</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>写4</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>写5</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>石灰粉液</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>オキシラン+サンビ3号</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>銅剤無散布</td>
<td>2.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

第29表 処理区欠乏症の発生と薬害

<table>
<thead>
<tr>
<th>処理区</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5月</td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>1 写3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 写3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 写3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 写3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 写3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 写3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 写3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

薬害

(2) 銅の薬害

薬害に発生した銅の薬害は、第29表に示すとおり、発生率は、5月B区に比べ、写3×1000区、写3×2000区、写3×3000区、写3×4000区と発生率が高いが、発生度では、写3×1000区、写3×2000区、写3×3000区、写3×4000区はいずれも発生した区であり、発生度は、写3×1000区が高く、写3×2000区、写3×3000区、写3×4000区は発生しない。また写3×3000区および写3×4000区は発生しないという程度の薬害であった。

補充

(3) 補充

1) Ca: 第30〜31表に示すとおり、処理前の
第30表 処理前の葉中成分量

<table>
<thead>
<tr>
<th>処理区</th>
<th>多量要素（％）</th>
<th>微量要素（ppm）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>1 鴨3×1000</td>
<td>27</td>
<td>0.4</td>
</tr>
<tr>
<td>2 鴨3×2000</td>
<td>24</td>
<td>0.2</td>
</tr>
<tr>
<td>3 鴨3×3000</td>
<td>24</td>
<td>0.2</td>
</tr>
<tr>
<td>4 鴨2×2000</td>
<td>29</td>
<td>0.2</td>
</tr>
<tr>
<td>5 鴨4×2000</td>
<td>27</td>
<td>0.2</td>
</tr>
<tr>
<td>6 5月B M</td>
<td>26</td>
<td>0.2</td>
</tr>
<tr>
<td>7 鈣剤無散布</td>
<td>25</td>
<td>0.1</td>
</tr>
</tbody>
</table>

第31表 処理後の葉中成分量

<table>
<thead>
<tr>
<th>処理区</th>
<th>多量要素（％）</th>
<th>微量要素（ppm）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>1 鴨3×1000</td>
<td>24</td>
<td>0.1</td>
</tr>
<tr>
<td>2 鴨3×2000</td>
<td>22</td>
<td>0.1</td>
</tr>
<tr>
<td>3 鴨3×3000</td>
<td>25</td>
<td>0.1</td>
</tr>
<tr>
<td>4 鴨2×2000</td>
<td>23</td>
<td>0.1</td>
</tr>
<tr>
<td>5 鴨4×2000</td>
<td>24</td>
<td>0.1</td>
</tr>
<tr>
<td>6 5月B M</td>
<td>24</td>
<td>0.1</td>
</tr>
<tr>
<td>7 鈣剤無散布</td>
<td>23</td>
<td>0.1</td>
</tr>
</tbody>
</table>

2) Zn：処理前の分析値より処理後の値の方が全般に高くなっている。処理区間では鴨4×2000区、鴨3×1000区、鴨3×2000区の順に高い傾向を示した。
3) その他の成分：鴨剤無散布区にやや高い傾向を示したが、他は差がなかった。

3. 鈣剤の隔年散布試験

(1) 生育調査

1) 幹周：幹周の肥大率は第30表に示すとおり、

<table>
<thead>
<tr>
<th>处理区</th>
<th>肥大率</th>
<th>春葉長</th>
<th>秋葉長</th>
<th>春秋葉長</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>1 3月B M連年</td>
<td>15.5</td>
<td>19.8</td>
<td>13.5</td>
<td>9.4</td>
</tr>
<tr>
<td>2 隔年</td>
<td>16.5</td>
<td>21.6</td>
<td>13.1</td>
<td>10.8</td>
</tr>
<tr>
<td>3 5月B M連年</td>
<td>17.4</td>
<td>23.3</td>
<td>18.4</td>
<td>10.1</td>
</tr>
<tr>
<td>4 隔年</td>
<td>15.2</td>
<td>19.4</td>
<td>12.8</td>
<td>9.7</td>
</tr>
<tr>
<td>5 オキシデン連年</td>
<td>15.1</td>
<td>18.6</td>
<td>12.3</td>
<td>10.2</td>
</tr>
<tr>
<td>6 隔年</td>
<td>15.8</td>
<td>19.5</td>
<td>12.3</td>
<td>10.4</td>
</tr>
<tr>
<td>7 鈣剤無散布</td>
<td>15.7</td>
<td>18.9</td>
<td>12.0</td>
<td>9.2</td>
</tr>
</tbody>
</table>

第32表 隔年区間における1970〜71年の生育状況
(2) 欠乏症状

1）果実：サビ症状の発生は、第3表に示すとおり、1970年には銅剤無散布区とオキシラゾ系に認められず、71年はオキシラゾ系の連年水は発生せず、銅剤無散布区とオキシラゾ系に認められたが、いずれも発生は軽微であった。

2）夏秋梢、ゴムポケットは1970年のみ発生し、果実と同様オキシラゾ系と銅剤無散布区に認められ、オキシラゾ系の方が発生はいと乏しかった。

ねん曲線については、5月に5月と2月が1970年はわずかに発生したが71年は認められず、オキシラゾ系は1970年半ば高気温が、ねん曲線していたが、71年には、連年水は発生せず、隔年水のみ、わずかに発生した。銅剤無散布区は1970年には大半の枝がねん曲していたが、71年では発生が少なかった。

<table>
<thead>
<tr>
<th>出理区</th>
<th>ヘムポケット</th>
<th>ねん曲線</th>
<th>サビ果発生率</th>
<th>サビ果発生度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3月BM連年</td>
<td>無</td>
<td>無</td>
<td>微</td>
<td>0％</td>
</tr>
<tr>
<td>2 1月隔年</td>
<td>無</td>
<td>無</td>
<td>無</td>
<td>0</td>
</tr>
<tr>
<td>3 5月BM連年</td>
<td>少</td>
<td>少</td>
<td>中</td>
<td>28.0</td>
</tr>
<tr>
<td>4 隔年</td>
<td>中</td>
<td>中</td>
<td>微</td>
<td>19.4</td>
</tr>
<tr>
<td>5 オキシラゾ連年</td>
<td>中</td>
<td>中</td>
<td>多</td>
<td>6.3</td>
</tr>
<tr>
<td>6 隔年</td>
<td>中</td>
<td>中</td>
<td>多</td>
<td>6.3</td>
</tr>
<tr>
<td>7 銅剤無散布</td>
<td>銅剤無散布</td>
<td>銅剤無散布</td>
<td>銅剤無散布</td>
<td>銅剤無散布</td>
</tr>
</tbody>
</table>

(8) 葉分析

1）Cu: 葉中含量は第3表のとおり、処理1年の目1970年の5月BM連年最も高い値を示し、3月BM、5月BM、5月BM、5月BM、5月BM、5月BM、5月BMの順に低い値を示した。オキシラゾ系は銅剤無散布区と明かに差は認められなかった。

2）Zn: 全般に明らか傾向はみられなかったが、1971年は銅剤無散布区の傾向が高く、ある傾向が認められた。

3）土壌処理試験

(1) 欠乏症調

<table>
<thead>
<tr>
<th>出理区</th>
<th>成分</th>
<th>銅含量 (ppm)</th>
<th>亜鉛含量 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3月BM連年</td>
<td>銅</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>2 1月隔年</td>
<td>銅</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>3 5月BM連年</td>
<td>銅</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>4 隔年</td>
<td>銅</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>5 オキシラゾ連年</td>
<td>銅</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>6 隔年</td>
<td>銅</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>7 銅剤無散布</td>
<td>銅</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

果実のミサビ症状は認められた。その結果は第3表に示すとおりである。青島島は、この症状が発生しやすいので欠乏症状かどうかは疑問であるが、硫酸銅50gと25g散布区に少なく、石灰散布区に多い傾向を示した。
第35表 収量および被害果発生率

<table>
<thead>
<tr>
<th>処理区</th>
<th>調査項目</th>
<th>1個当たり収量</th>
<th>1果平均値</th>
<th>調査果数</th>
<th>サビ</th>
<th>菌</th>
<th>果実</th>
<th>発生</th>
<th>輻</th>
<th>菌</th>
<th>健全果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kg</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>硫酸銅</td>
<td>8.6</td>
<td>122.7</td>
<td>413</td>
<td>0.2</td>
<td>26.6</td>
<td>73.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>12.0</td>
<td>112.7</td>
<td>499</td>
<td>0.2</td>
<td>3.0</td>
<td>96.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>11.3</td>
<td>124.2</td>
<td>458</td>
<td>0</td>
<td>6.1</td>
<td>93.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>硫酸鋅倍量</td>
<td>9.3</td>
<td>127.4</td>
<td>292</td>
<td>1.6</td>
<td>3.1</td>
<td>67.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>石灰倍量</td>
<td>6.8</td>
<td>123.6</td>
<td>273</td>
<td>3.1</td>
<td>37.6</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>無処理</td>
<td>9.0</td>
<td>120.9</td>
<td>374</td>
<td>0.6</td>
<td>2.2</td>
<td>97.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) 果実検査

第36表 処理区別果実の品質

<table>
<thead>
<tr>
<th>処理区</th>
<th>調査項目</th>
<th>1果平均値</th>
<th>果形指数</th>
<th>果実比重</th>
<th>果実厚さ</th>
<th>果肉味</th>
<th>酸度</th>
<th>甘味比</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>硫酸銅</td>
<td>8.8</td>
<td>1.37</td>
<td>0.837</td>
<td>3.47</td>
<td>72.3</td>
<td>11.5</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>8.4</td>
<td>1.38</td>
<td>0.840</td>
<td>4.10</td>
<td>70.9</td>
<td>11.9</td>
<td>0.87</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>8.4</td>
<td>1.38</td>
<td>0.832</td>
<td>4.00</td>
<td>71.1</td>
<td>11.5</td>
<td>0.89</td>
</tr>
<tr>
<td>4</td>
<td>硫酸鋅倍量</td>
<td>15.9</td>
<td>1.30</td>
<td>0.889</td>
<td>3.94</td>
<td>72.5</td>
<td>10.6</td>
<td>0.92</td>
</tr>
<tr>
<td>5</td>
<td>石灰倍量</td>
<td>15.3</td>
<td>1.35</td>
<td>0.831</td>
<td>4.39</td>
<td>70.5</td>
<td>10.5</td>
<td>0.71</td>
</tr>
<tr>
<td>6</td>
<td>無処理</td>
<td>13.4</td>
<td>1.34</td>
<td>0.852</td>
<td>3.93</td>
<td>72.0</td>
<td>11.2</td>
<td>0.81</td>
</tr>
</tbody>
</table>

(3) 土壌分析

1）PHおよび三要素、Mg、Ca、K：第37表のとおり、PHは硫酸銅75g区は低かったが、石灰倍量区は高かった。土壌成分はKが低く、Caは石灰倍量区が高い傾向を示した。
2) Cu: 第38表のとおり、処理前土壌は表面土に2.5 ppm, 30 cmの下層では1.8 ppmであった。処理後は、硫酸銅50 g区の表層土のみきわめて高い値を示したが、中層土、下層土には少なく、処理前土壌とあまり変わらない状態であった。その他、硫酸銅と比較して、硫酸銅50 g区の表層土の中、下層土に高い値を示した。その区では、わずかであるが、硫酸銅区が表層土に石灰基区が下層土に高い値を示した。

第38表 土壌における銅、亜鉛の含量

<table>
<thead>
<tr>
<th>処理区</th>
<th>調査項目</th>
<th>銅</th>
<th>含量 (ppm)</th>
<th>亜鉛</th>
<th>含量 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0～5 cm</td>
<td>15～20 cm</td>
<td>30～35 cm</td>
<td>0 ～ 5 cm</td>
<td>15～20 cm</td>
</tr>
<tr>
<td>処理前土壌</td>
<td>2.5</td>
<td>-</td>
<td>1.5</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>3硫酸銅50 g</td>
<td>4.0</td>
<td>3.3</td>
<td>1.8</td>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>4硫酸銅50 g</td>
<td>5.8</td>
<td>-</td>
<td>1.8</td>
<td>113</td>
<td>-</td>
</tr>
<tr>
<td>5石灰</td>
<td>1.8</td>
<td>-</td>
<td>3.5</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>6無処理</td>
<td>1.8</td>
<td>-</td>
<td>1.8</td>
<td>70</td>
<td>-</td>
</tr>
</tbody>
</table>

3) Zn: 処理前土壌に比較して、表層土においては、硫酸銅50 g区と硫酸銅低用量区がCuと同様高く、石灰基区は多少低くなっている。下層土は明らかに傾向は見られなかった。

第39表 各処理前の葉中成分

<table>
<thead>
<tr>
<th>処理区</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1硫酸銅125 g</td>
<td>3.02</td>
<td>0.195</td>
<td>0.88</td>
<td>2.23</td>
<td>0.344</td>
<td>30</td>
<td>8.3</td>
<td>19</td>
</tr>
<tr>
<td>2石灰</td>
<td>3.80</td>
<td>0.198</td>
<td>1.27</td>
<td>2.00</td>
<td>0.313</td>
<td>40</td>
<td>7.0</td>
<td>17</td>
</tr>
<tr>
<td>3石灰</td>
<td>3.07</td>
<td>0.201</td>
<td>1.05</td>
<td>1.72</td>
<td>0.304</td>
<td>30</td>
<td>1.8</td>
<td>19</td>
</tr>
<tr>
<td>4硫酸銅50 g</td>
<td>3.02</td>
<td>0.198</td>
<td>1.05</td>
<td>2.13</td>
<td>0.348</td>
<td>38</td>
<td>1.2</td>
<td>20</td>
</tr>
<tr>
<td>5石灰</td>
<td>2.78</td>
<td>0.197</td>
<td>0.90</td>
<td>1.89</td>
<td>0.259</td>
<td>30</td>
<td>7.5</td>
<td>18</td>
</tr>
<tr>
<td>6無処理</td>
<td>2.76</td>
<td>0.194</td>
<td>1.17</td>
<td>1.63</td>
<td>0.365</td>
<td>30</td>
<td>1.0</td>
<td>16</td>
</tr>
</tbody>
</table>

第40表 各処理後の葉中成分

<table>
<thead>
<tr>
<th>処理区</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1硫酸銅125 g</td>
<td>2.62</td>
<td>0.181</td>
<td>1.27</td>
<td>1.84</td>
<td>0.377</td>
<td>43</td>
<td>63</td>
<td>19</td>
</tr>
<tr>
<td>2石灰</td>
<td>2.77</td>
<td>0.186</td>
<td>1.73</td>
<td>1.63</td>
<td>0.352</td>
<td>40</td>
<td>7.0</td>
<td>18</td>
</tr>
<tr>
<td>3石灰</td>
<td>2.67</td>
<td>0.234</td>
<td>1.00</td>
<td>2.93</td>
<td>0.462</td>
<td>40</td>
<td>7.0</td>
<td>18</td>
</tr>
<tr>
<td>4硫酸銅50 g</td>
<td>2.60</td>
<td>0.236</td>
<td>1.03</td>
<td>2.87</td>
<td>0.842</td>
<td>30</td>
<td>1.0</td>
<td>17</td>
</tr>
<tr>
<td>5石灰</td>
<td>2.60</td>
<td>0.234</td>
<td>1.03</td>
<td>3.33</td>
<td>0.567</td>
<td>28</td>
<td>9.0</td>
<td>20</td>
</tr>
<tr>
<td>6無処理</td>
<td>2.46</td>
<td>0.269</td>
<td>1.23</td>
<td>2.69</td>
<td>0.437</td>
<td>35</td>
<td>7.5</td>
<td>18</td>
</tr>
</tbody>
</table>

論 議
温州みかん、銅欠乏症の対策として、銅を含む一般素刑を用い病害防止を前提とした試験を実施した結果、石炭酸塩散布の効果が認められた。このことは、支持雑草に影響を及ぼす悪影響は3月ポルテー散布にのり、葉中の銅含有は5月散布区の方が高い傾向を示していた。このことから5月に石炭酸塩散布がより、長期的には効果が最も高いものと思われる。しかしこ一般化に新薬には銅による薬害があらわれやすい傾向が
あるのでこの点注意が必要である。有機鉄剤（75％30％）散布では、被害の少ない樹の場合、果実、枝の症状が回復せず、欠乏の軽い樹の場合は、3回散布すると果実の症状が回復することから、薬剤的には3回以上散布は必要であると思われる。しかし害病防
除効果が慣時の殺菌剤よりやや劣る効果であったため、それも考慮して散布を2回以上有機鉄剤に変えて散布することは病害防除面からは、再検討する必要
がある。

石灰政飲料液散布は本症に対策に効果が高いことが
認められたが、本剂は病害防除効果、薬害、調剤や施設
の面で問題点がある。1965 年ころより新農薬に変えて
来たため、使用数を少なくするか、他剤との対策が望
される。そこで一般防除剤と慣時散布の薬剤散布の開
発を検討すると同時にポルボドロ液の散布を少なくて
した場合の欠乏症に対する効果を検討した。

葉面散布剤については、試験 a、で A1 剂として硝酸
銅10％にブドウ糖5％を含有する製剤を検討した結果、
欠乏症に対する効果が高く、5月ポルボドロ液散布と変わ
らない結果をえたが、1000 倍では春桝の裏面に石灰ポル
ボドロ液より良い薬害が発生したため、試験 a、で散布濃
度を変え散布した結果、2000 倍では石灰ポルボドロ液よ
り薬害の発生程度は少なくて、3000 倍では薬害は問題
にならなくなっているが欠乏症に対する効果はやや不十分
であり、3回散布では2000 倍が必要と思われる。

また試験 c、で亜鉛欠乏の対策と鉄の薬剤散布
を兼ねて、硝酸亜鉛を含混合を用いた a2 剂、a3 剂、a4 剂
について検討した結果、亜鉛混合による薬剤散布の効果
は認められず、薬剤の散布による効果が見られた。
散布回数は毎回散布するたびに多くを散布すれば、2000
倍で硝酸亜鉛剤に変えて利用しうるものと思われる。

亜鉛剤を変えることにより効果を増加させること
と、亜鉛欠乏の対策と鉄の薬剤散布
を兼ねて、硝酸亜鉛を含混合を用いた方法が良い
傾向があった。しかし a3 剤では、亜鉛剤を用いての効果
は不十分であった。しかし a1 剤は、亜鉛欠乏症が回復すると考えられる亜鉛の葉中含量も増加する傾向があった。最近の水位減少の影響
があるため、亜鉛欠乏症の発生を超えて重要なため、亜鉛
欠乏症に対しては a2 剂、a3 剤、亜鉛欠乏症では a4
の薬剤散布剤の組合わせが適当であると思われる。

鉄剤の隔年散布は試験 d、e の結果、石灰ポルボドロ液は隔
年に散布しても欠乏症は発生せず、薬中含量も中止年で

鋼剤隔年散布の鉄の含有量の値である。鉄剤散布後、
欠乏症が回復した場合は隔年散布する必要があると考え
られる。このことは第 1 回（上野ら、1972）の殺菌剤
の使用状況の中で硝酸鋼剤の中止後 2～3 年目で欠
乏症が発生しているのに、集団診断中石灰ポルボドロ
液を使用していた場合は中止 3年後でも欠乏症が発生し
ていないことからもうかがえる。

硫酸鋼の土壌施用は、試験 a、g で行なったが、一年間
では効果が少なく、薬中の鋼含量もほとんど増加しない。
土壌分析では表層土に鋼含量が多いため、効果の出はし
めのがだれぞうのではないかと思われる。しかし土壌施
用による PH の低下、重金属の土壌汚染や過剰な薬剤
であるので、硫酸鋼の土壌施用にはできるだけ工夫す
べきである。

以上の対策の外に試験 g、で多少見られるような石灰
の過剰施用による欠乏症の効果を低くするために、土壌改
良を行う場合に、微量要素の吸収 PH などの適正値
の研究および、間隔中、有機質の少ない砂壌土に発生が多
いことから、これらの対策も合わせて行なうことが重要
であろうと思われる。

要}

三重県の検討調査（第 1 回）を行なった結果、今後増加の
傾向が予想されたため、鉄剤の葉面散布を中心に対策
検討を行なった。

(1) 各種鉄剤処理試験では石灰ポルボドロ液の効果が高く、
3月散布および5月散布の方が薬剤含量は高まっていた。
有機鉄剤が低量の場合は3回散布しても症状
は回復しない。鉄剤を隔年散布として3回使用する
と、一般に行われているデラン水和剤よりも効果
の防除効果は劣った。

(2) 石灰ポルボドロ液に変えて亜鉛散布剤の利用試験では、
硝酸亜鉛10％含有を混含用剤で2000 倍で殺菌剤に
変える3回散布した場合には、石灰ポルボドロ液近い効果
が認められた。また鉄剤を混合した場合には硝酸亜鉛の薬
剤含量が増大する傾向が見られた。

(3) 亜鉛の隔年散布の結果は、石灰ポルボドロ液は散布中
止年でも鉄期の薬剤含量が、鉄剤隔年散布の効果あり
欠乏症も発生していないので2年に1度の散布で
十分と思われるが、有機鉄剤では年拡散布が必要である。

(4) 土壌処理試験の結果は、硫酸鋼の土壌施用は隔年
散布日目では、明らかに効果が認められなかったが、土壌
成分に含有量が多かったというので、2～3年目で効果
参考文献

 Phytopathology 6:29-50
 The california citrograph.
3. 西場静雄、橋本敏幸、二井茂夫、坂口生(1972)
 ミカン銅欠乏対策試験、昭和46年度カンキツ試験研究
 打合せ会議第2分科会資料 317
4. 尾形亮輔(1971)、果樹の微量元素欠乏1農園試、
 46.1.196
5. 坂口生、西場静雄、二井茂夫(1971)、ミカン銅欠乏
 対策試験、昭和45年度カンキツ試験研究打合せ会
 議第2分科会資料 122
6. 佐藤隆、小田真男(1972). 温州ミカン銅欠乏に関する研究
 (2)銅欠乏対策試験(1年目)昭和
 46年度カンキツ試験研究打合せ会議資料 321
7. (3)銅欠乏対策試験(2年目)
 323
8. 寺岡義一、浜岡隆夫(1970年) 温州みかんの銅
 欠乏症対策試験、昭和44年度果樹病虫害試験研究
 打合せ会議資料 297
9. 土持武男、佐野康二(1971)、早生温州の銅欠乏
 に関する試験、昭和45年度カンキツ試験研究打合せ会議第2分科会資料 134
10. 上野武夫、西場静雄、森本拓也、辻本敬一、菊雅
 譜(1972)温州みかんの銅欠乏症に関する研究、
 1. 温州みかん銅欠乏症の実態調査、三重県農業技術
 センター研究報告 2
11. 田辺登志彦(1969)ハッサクの銅欠乏とその対
 策、果実日本 XXIV 60〜62