生グルテンフィードの乳牛への給与に関する研究

東原 信幸**・伊藤 剛一*・白山 勝彦*・横山 勇***

Studies on the Feeding of Corn Gluten Feed for Milk Cows

Nobuyuki HIGASHI**. Yuichi ITOH
Katsuhiko SHIRAYAMA, Isamu YOKOYAMA

緒 言
未利用資源の開発利用の研究の中で、農産製造物の合理的な利用技術の検討が要求され、しかも地方的に数在する加工工場の近辺の酪農家において、多量に使用されており、早急な給与体系が望まれた。トウモロコシデンプンの製造工業からの副産物として、グルテンフィードがなり生産され、県内4ケ所の製造工場のうち、2工場が生グルテンフィードとして酪農家に販売されている。生産量は年間18,000～24,000トンで、県内外で約10%消費されており、他は県外に出荷されている。トウモロコシデンプンの製造工場は、簡略すると、亜硫酸処理法によって、浸漬、破砕、廃材の各工程を経た段階で得られたトウモロコシデンプンの製造工程として、主に、ホウ酸を用いるが、グルテンフィードと称されるが、グルテンフィードと称されるが、グルテンフィードの利用形態は生粕で、生産工場よりビニール袋に一定量（20kg）が詰められ、販売されている。

家畜に対するグルテンフィードの利用についての研究は、外国においてグルテンフィードと共に報告があるが、国内における研究は少ない。また、利用形態も乾燥粕がほとんどであるが、グルテンフィードを混入したものが多く、蛋白質飼料として配合飼料で利用されている。

配合飼料への配合割合は10～30%がよく、特殊な飼料としての価値が低いという報告がある。国内では、グルテンフィードの乳牛への給与試験の報告があるが、ローカル的な生産であることから、利用技術は進んでいない。

以上のよう見解から、著者は、当県で生産される生コーングルテンフィード（以下グルテンフィードと略記）を取り上げ、その飼料価値、最高量、適正給与量、併用給与および生理機能などについて検討し、有効的な利用給与体系を作ることとした。

本研究は、第1回目に最高量20kgを粗飼料に代替した給与試験、第2回目に最高量15kgを粗飼料に代替した給与試験、第3回目に最高量10kgを濃厚飼料に代替した給与試験より成る。

[第1回目]

試験方法

1. 試験期間
実験1 昭和47年2月17日から昭和47年3月17日まで
実験2 昭和47年5月19日から昭和47年6月17日まで
いずれも1期10日間で、前後期5日、試験期5日として、3期に区分して実施した。

2. 供試乳牛
供試乳牛の飼育管理および飼料の調製に従って用いた。その概要を示すと第1表のとおりである。

<table>
<thead>
<tr>
<th>実験</th>
<th>供試乳牛番号</th>
<th>名称</th>
<th>生産年月</th>
<th>日数</th>
<th>分娩月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験1</td>
<td>111</td>
<td>2インカ・ロベルターバーク</td>
<td>43.2.2</td>
<td>4</td>
<td>46.11.19</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>インカ・ポテンシートバーグ</td>
<td>41.12.4</td>
<td>3</td>
<td>46.12.20</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>クイーン・ウーォーアトモーセント</td>
<td>40.11.4</td>
<td>4</td>
<td>46.11.2</td>
</tr>
<tr>
<td>実験2</td>
<td>121</td>
<td>ベッサ・ローサルマドキャップバーグ</td>
<td>39.7.12</td>
<td>5</td>
<td>46.8.1</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td>2インカ・ロベルターバーグ</td>
<td>39.7.25</td>
<td>2</td>
<td>46.11.19</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>インカ・ポテンシートバーグ</td>
<td>41.12.4</td>
<td>3</td>
<td>46.12.20</td>
</tr>
</tbody>
</table>

* 農業技術センター畜産部
** 県家畜保健衛生所
*** 県畜産課
3. 試験方法

試験区分は第2表のとおりであるが、その区分にあたっては飼料の代替試験として、組飼料をグルテンフィードに置き換える、その給与量を概要で、0.1、0.15、2.0ととした3水準の飼料組合せを設定した。

1実験を1区1頭で配置し、それぞれ実験1、2において乳牛をA、B、C群として、3×3ラテン方格法により行った。2実験をくり返しのある組合せとして解析した。

第2表 試験区分

<table>
<thead>
<tr>
<th>区分</th>
<th>I期</th>
<th>II期</th>
<th>III期</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>A群</td>
<td>B群</td>
<td>C群</td>
</tr>
<tr>
<td>10分与区</td>
<td>B群</td>
<td>C群</td>
<td>A群</td>
</tr>
<tr>
<td>20分与区</td>
<td>C群</td>
<td>A群</td>
<td>B群</td>
</tr>
</tbody>
</table>

4. 供試飼料と給与量

供試飼料は、第3表のとおりである。対照区は維持養分の150%を組飼料（乾草）とし、10分与区は乾草で100%、グルテンフィードで50%、20分与区は乾草で50%、グルテンフィードで100%とし3水準である。供試した乾草は当センター産のイタリアンライグラス乾草、濃厚飼料は市販の配合飼料、グルテンフィードは当県コーンスターチ工場産のものである。飼料給与量は日本飼養標準（乳牛）4）により、TDN値で110%給与した。

第3表 飼料給与法

<table>
<thead>
<tr>
<th>実験</th>
<th>区分</th>
<th>乾草</th>
<th>グルテンフィード</th>
<th>配合飼料</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>10分</td>
<td>0分</td>
<td>11.0分</td>
<td></td>
</tr>
<tr>
<td>実験1</td>
<td>10分</td>
<td>0分</td>
<td>10分</td>
<td>9.5分</td>
</tr>
<tr>
<td>20分</td>
<td>0分</td>
<td>20分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実験2</td>
<td>10分</td>
<td>0分</td>
<td>6.0分</td>
<td></td>
</tr>
<tr>
<td>20分</td>
<td>0分</td>
<td>4.5分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. 調査項目と方法

(1) 飼料飼料摂取量、各供試飼料の一般成分

(2) 乳量 パラメトリカベースによる每日乳量、4%脂防修正乳量（FCM量）はGAIN8の公式3）によった。

(3) 乳質 本試験期間中、毎日検査を実施、乳脂率はケルベル法6）、無脂固形分率はプラスチックビーズ法10）によった。

(4) 粗効率 産乳性について、BRODYの粗効率3）で検討した。

成績

1. 飼料摂取状況と飼料分析

(1) 飼料摂取量

飼料摂取量は第4表に示した。グルテンフィードそのものの嗜好性は良好であったが、実験2において20分
給与区の2頭の供試牛について、2日程の減食が認められる。食事等で食い止まりがみられた。試験期における平均給与量は、7.25％で対照区9.44％に対し、10％給与区9.76％、20％給与区9.73％であり、その差については有意なものではないかった。日本飼料標準の必要量に対する平均給与量は、DCPは対照区10.45％、10％給与区10.4％、20％給与区10.7％、T DN はそれぞれ9.31％、9.59％、9.49％となり、ほぼ必要量を満たした。飼料の給与量を把握するために、摂取飼料中の乾物量の体重に対する割合を算出し、第5表に示した。その乾物体重比は、一頭一頭当たりの平均でみると、対照区2.71％、10％給与区2.64％、20％給与区2.39％で著しく下回り、また摂取乾物量に対する粗せん値の割合は第5表に示すとおり、一頭一頭当たりそれぞれ2003％、1707％、1223％で、グルテミフィード給与区はいずれも低かった。粗せんの摂取量は、3.13％、2.58％、1.66％ととなり、20％給与区で要求量よりかなり下回った。

第5表 乾物体重比と粗せん率

<table>
<thead>
<tr>
<th>区分</th>
<th>実験1</th>
<th>実験2</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>3.03％</td>
<td>3.11％</td>
<td>1.75％</td>
</tr>
<tr>
<td>10％給与区</td>
<td>3.25％</td>
<td>2.75％</td>
<td>2.00％</td>
</tr>
<tr>
<td>20％給与区</td>
<td>2.65％</td>
<td>2.58％</td>
<td>1.70％</td>
</tr>
</tbody>
</table>

(2) 供試飼料の成分分析

供試した乾草、配合飼料およびグルテミフィードの一般成分は第6表に示した。グルテミフィードは水分が6.6％前後で、その特徴は粗蛋白質が4％内外と少なく、可溶無窒素物が25％内外と比較的多い。DCPは3％、TDNはおよそ30％と算定された。

第6表 供試飼料の一般成分

<table>
<thead>
<tr>
<th>飼料名</th>
<th>原物中（％）</th>
<th>原物中（％）</th>
<th>乾物中（％）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水分</td>
<td>粗蛋白質</td>
<td>粗脂肪</td>
<td>可溶無窒素物</td>
</tr>
<tr>
<td>乾草</td>
<td>16.8</td>
<td>5.5</td>
<td>0.9</td>
<td>40.8</td>
</tr>
<tr>
<td>配合飼料</td>
<td>15.2</td>
<td>6.6</td>
<td>1.2</td>
<td>37.8</td>
</tr>
<tr>
<td>グルテミフィード</td>
<td>11.3</td>
<td>13.6</td>
<td>4.1</td>
<td>60.0</td>
</tr>
<tr>
<td>参考値</td>
<td>13.1</td>
<td>16.2</td>
<td>1.1</td>
<td>53.9</td>
</tr>
</tbody>
</table>

注：
a 供試飼料中、上段は実験1、下段は実験2の値を示す。
b 消化率は日本標準飼料成分表による。

2. 乳量

試験期の5日間における1日当りの平均乳量および4％脂肪修正乳量（FCM量）を示すと第7表のとおりである。乳量およびFCM量において、乳牛間の影響があった（P<0.05）。乳量において乳牛間で対照区よりグルテミフィード給与区がやや多い傾向があったが、有意差とはいえなかった。

3. 乳質

試験期5日間の平均乳脂率および平均無脂肪固形分率（SNF率）について第8表に示するとおりである。乳脂率において、乳牛間（P<0.005）、乳牛間（P<0.01）に影響があったが、乳牛間で対照区と20％給与区において5％水準で有意差が認められ、低下する現象を示した。SNF率においては、乳牛間および乳牛間に影響
第7表 乳量およびFCM量

<table>
<thead>
<tr>
<th>区分</th>
<th>乳量（kg）</th>
<th>FCM量（kg）</th>
<th>区分</th>
<th>乳量（kg）</th>
<th>FCM量（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>実験1</td>
<td>実験2</td>
<td>平均</td>
<td>実験1</td>
<td>実験2</td>
</tr>
<tr>
<td>対照区</td>
<td>1987</td>
<td>1429</td>
<td>1708</td>
<td>1912</td>
<td>1234</td>
</tr>
<tr>
<td>10％含与区</td>
<td>2179</td>
<td>1719</td>
<td>1949</td>
<td>1943</td>
<td>1372</td>
</tr>
<tr>
<td>20％含与区</td>
<td>2415</td>
<td>7107</td>
<td>2061</td>
<td>2022</td>
<td>1294</td>
</tr>
</tbody>
</table>

第8表 乳脂率およびSNF率

<table>
<thead>
<tr>
<th>区分</th>
<th>乳脂率（％）</th>
<th>SNF率（％）</th>
<th>区分</th>
<th>乳脂率（％）</th>
<th>SNF率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>実験1</td>
<td>実験2</td>
<td>平均</td>
<td>実験1</td>
<td>実験2</td>
</tr>
<tr>
<td>対照区</td>
<td>3.67</td>
<td>3.47</td>
<td>3.57</td>
<td>8.45</td>
<td>8.32</td>
</tr>
<tr>
<td>10％含与区</td>
<td>3.54</td>
<td>3.19</td>
<td>3.37</td>
<td>8.48</td>
<td>8.30</td>
</tr>
<tr>
<td>20％含与区</td>
<td>3.27</td>
<td>3.03</td>
<td>3.15</td>
<td>8.59</td>
<td>8.23</td>
</tr>
</tbody>
</table>

1期10日間で，予備期5日，試験期5日とし，3期に区分して実施した。
2. 供試乳牛
最終分娩月日，乳量の類似したホルスタイン種乳牛3頭を用いた。その概要は第10表に示すとおりである。
第10表 供試乳牛の概要

<table>
<thead>
<tr>
<th>供試乳牛No</th>
<th>名号</th>
<th>生年月日</th>
<th>産期</th>
<th>最終分娩月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>1インカ・ポ路スリング・フサゴ</td>
<td>43.2.4</td>
<td>3月</td>
<td>47.9.28</td>
</tr>
<tr>
<td>212</td>
<td>2インカ・ポ路スリング・フサゴ</td>
<td>40.11.4</td>
<td>4月</td>
<td>48.1.19</td>
</tr>
<tr>
<td>213</td>
<td>3インカ・ポ路スリング・フサゴ</td>
<td>41.12.4</td>
<td>4月</td>
<td>47.12.13</td>
</tr>
</tbody>
</table>

3. 試験方法
試験区分は第11表に示すとおりであるが，その区分にあたっては，第1回目の試験において供餌料代表としてグルテンフィードを最高20％給与と限界であることが知られたことから，グルテンフィードを0％，7.5％，15％給与の3水準を設定した。方法は乳牛3頭を3×3ラテン方格法により行なった。
第11表 試験区分

<table>
<thead>
<tr>
<th>区分</th>
<th>Ⅰ期</th>
<th>Ⅱ期</th>
<th>Ⅲ期</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>211</td>
<td>212</td>
<td>213</td>
</tr>
<tr>
<td>7.5％給与区</td>
<td>212</td>
<td>213</td>
<td>211</td>
</tr>
<tr>
<td>15％給与区</td>
<td>213</td>
<td>211</td>
<td>212</td>
</tr>
</tbody>
</table>

4. 供試飼料と給与方法
供試飼料は，第12表に示すとおりであるが，給与水準を1日必要給与量のうち，体重維持給与の150％を供餌料（乾草，ヘイキューブ）としたものを対照区として，同様に供餌料の100％を乾草，ヘイキューブで，50％をグルテンフィードで置き換えたもの，さらに50％を乾草，ヘイキューブで，100％をグルテンフィードで置き換えた3水準を設定した。
第12表 試験区分

<table>
<thead>
<tr>
<th>区分</th>
<th>乾草</th>
<th>ヘイキューブ</th>
<th>グルテンフィード</th>
<th>配合飼料</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>8.5%</td>
<td>5.5%</td>
<td>0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>10％給与区</td>
<td>5.0%</td>
<td>4.0%</td>
<td>7.5%</td>
<td>8.0%</td>
</tr>
<tr>
<td>20％給与区</td>
<td>2.0%</td>
<td>2.5%</td>
<td>15.0%</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

5. 健康状態
試験期間中の乳牛の健康状態について観察したところ，実験2の20％給与区において，食い止まりをみせた乳牛が食滞，軟便，下痢等の症状を呈した。

[第2回目]
試験方法
1. 試験期間
昭和48年5月17日から6月15日に至る30日間。
第13表 飼料摂取量

<table>
<thead>
<tr>
<th>区分</th>
<th>必要摂取量（g/日）</th>
<th>給与量摂取量（g/日）</th>
<th>摂取量摂取量（g/日）</th>
<th>摂取量（％）</th>
<th>採食量（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCP</td>
<td>TDN</td>
<td>DCP</td>
<td>TDN</td>
<td>DCP</td>
</tr>
<tr>
<td>対照区</td>
<td>14.55</td>
<td>12.155</td>
<td>1.896</td>
<td>11.942</td>
<td>1.857</td>
</tr>
<tr>
<td>75％給与区</td>
<td>14.55</td>
<td>12.155</td>
<td>1.855</td>
<td>12.162</td>
<td>1.852</td>
</tr>
</tbody>
</table>

第14表 乾物体重比と摂られ否

<table>
<thead>
<tr>
<th>区分</th>
<th>乾物体重比</th>
<th>摂取量（％）</th>
<th>摂取量（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>28.8％</td>
<td>38.8％</td>
<td>22.54％</td>
</tr>
<tr>
<td>75％給与区</td>
<td>27.9％</td>
<td>31.1％</td>
<td>18.84％</td>
</tr>
<tr>
<td>15％給与区</td>
<td>27.6％</td>
<td>23.1％</td>
<td>14.68％</td>
</tr>
</tbody>
</table>

第15表 供試飼料の一般成分

<table>
<thead>
<tr>
<th>供試飼料</th>
<th>原物物</th>
<th>中（％）</th>
<th>原物物</th>
<th>中（％）</th>
<th>乾物中（％）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水分</td>
<td>粗蛋白</td>
<td>粗脂肪</td>
<td>可溶性窒素</td>
<td>粗灰分</td>
<td>DM</td>
</tr>
</tbody>
</table>
2. 乳量
本試験期5日間の平均乳量およびFCM量は第16表に示すとおりであるが、いずれも有意差はなかった。

第16表 乳量、乳質、相効率および体重

<table>
<thead>
<tr>
<th>区分</th>
<th>乳量 (kg)</th>
<th>FCM量 (kg)</th>
<th>乳脂率（％）</th>
<th>S NF率（％）</th>
<th>粗効率（％）</th>
<th>体重（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>19.36</td>
<td>19.30</td>
<td>3.79</td>
<td>8.19</td>
<td>30.39</td>
<td>597.0</td>
</tr>
<tr>
<td>7.5 与給与区</td>
<td>21.57</td>
<td>20.56</td>
<td>3.72</td>
<td>8.31</td>
<td>31.80</td>
<td>591.3</td>
</tr>
<tr>
<td>1.5 与給与区</td>
<td>22.21</td>
<td>20.52</td>
<td>3.50</td>
<td>8.25</td>
<td>30.99</td>
<td>569.0</td>
</tr>
</tbody>
</table>

3. 乳質
本試験期5日間の平均乳脂率およびS NF率についてでは第1表に示すとおりであるが、乳脂率においては変化は認められなかった。またS NF率においては、乳牛間で影響があった（P<0.05）。乳牛間における影響は認められなかった。

4. 粗効率および体重
相効率および体重については、第16表のとおりであるが、いずれも変化はなかった。

5. 第一胃汁の性状および血清蛋白質
第一胃汁において、pH、VFAおよびNH4－Nを検討したところ、第17表に示すとおりであった。pHについては、各区間に差はなく、6.8～7.4の範囲内であった。VFA組成についてモニターをみると、酢酸は対照区78.7％、7.5与給与区75.9％、1.5与給与区7.8％で、乳牛間で僅かな傾向があるが、有意差は認めなかった。またプロピオン酸の増減において時間差で影響があった（P<0.05）。相対的にそれぞれ、11.1％、13.9％、15.4％とグルテンフィード給与区の方が高く、乳牛間で有意な差を認めなかった（P<0.05）。酢酸酸度プロピオン酸比（A/P比）は対照区7.5、7.5与給与区5.6、1.5与給与区4.7とグルテンフィード給与区は低い傾向を示したが（P<0.05）。いずれもその値は高かった。また胃内NH4－Nについても検討したが、差はなかった。
血清蛋白質の測定および実験反応により、肝機能検査の一部について実施したが、特に異常値は認められなかった。

6. 健康状態
試験期間中の乳牛の健康状態を観察したところ、いずれの区においても前回試験のような食滞、下痢症状は認められなかった。

第17表 第一胃汁の性状と尿

<table>
<thead>
<tr>
<th>区分</th>
<th>胃汁pH</th>
<th>VFA量 (mM/dl)</th>
<th>VFA組成 (％)</th>
<th>A/P比</th>
<th>NH4－N (mg/dl)</th>
<th>血清蛋白質 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>酢酸</td>
<td>プロピオン酸</td>
<td>酪酸</td>
<td>吉草酸</td>
</tr>
<tr>
<td>対照区</td>
<td>6.9±0.1</td>
<td>255±308</td>
<td>78.7±33</td>
<td>11.1±2.2</td>
<td>8.9±2.2</td>
<td>6.9</td>
</tr>
<tr>
<td>7.5 与給与区</td>
<td>7.0±0.4</td>
<td>141±070</td>
<td>75.9±23</td>
<td>13.9±2.1</td>
<td>9.7±2.5</td>
<td>0</td>
</tr>
<tr>
<td>1.5 与給与区</td>
<td>6.9±0.1</td>
<td>203±200</td>
<td>71.8±48</td>
<td>15.4±1.7</td>
<td>9.5±8.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

試験方法
1. 試験期間
実験1 昭和50年5月28日から6月27日までに至る30日間。
実験2 昭和51年2月26日から3月26日までに至る30日間。
いずれも1期10日間で、前試験5日、試験期5日とし、3期に区分して実施した。

2. 供試乳牛
最終分廃月日の類似したホルスタイン種乳牛6頭を用いた。その概要は第18表のとおりである。

第18表 供試乳牛の概要

<table>
<thead>
<tr>
<th>実験</th>
<th>供試牛番号</th>
<th>名号</th>
<th>生産月日</th>
<th>場所</th>
<th>最終分廃月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験1</td>
<td>411</td>
<td>インカ・ウールフライ</td>
<td>43. 2. 4</td>
<td>50. 2. 8</td>
<td></td>
</tr>
<tr>
<td>実験2</td>
<td>441</td>
<td>インカ・ウールフライ</td>
<td>45. 10. 5</td>
<td>50.12.24</td>
<td></td>
</tr>
<tr>
<td>実験1</td>
<td>421</td>
<td>インカ・ウールフライ</td>
<td>46. 8. 9</td>
<td>51. 1. 4</td>
<td></td>
</tr>
<tr>
<td>実験2</td>
<td>422</td>
<td>インカ・ウールフライ</td>
<td>46. 8. 9</td>
<td>50.12.24</td>
<td></td>
</tr>
<tr>
<td>実験1</td>
<td>423</td>
<td>インカ・ウールフライ</td>
<td>45. 11. 1</td>
<td>50.12.30</td>
<td></td>
</tr>
</tbody>
</table>
3. 試験方法

試験区分は第19表のとおりであるが、濃厚飼料の代
替とした給与方法を設定し、対照区に一般的配合飼料を
用い、試験区にその配合飼料の一部を代替してグルテン
フィードを8.5%、17%として置き換えた3水準の飼
料組合せとした。給与の方法は、乳牛A、B、C群で、
ラテン方格法により行ない、実験1、実験2の2回反復
試験を乱数法組合せにより解析した。

第19表 試験区分

<table>
<thead>
<tr>
<th>区分</th>
<th>I期</th>
<th>II期</th>
<th>III期</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>A群</td>
<td>B群</td>
<td>C群</td>
</tr>
<tr>
<td>8.5%給与区</td>
<td>B群</td>
<td>C群</td>
<td>A群</td>
</tr>
<tr>
<td>17%給与区</td>
<td>C群</td>
<td>A群</td>
<td>B群</td>
</tr>
</tbody>
</table>

第20表 飼料給与方法

<table>
<thead>
<tr>
<th>実験</th>
<th>区分</th>
<th>乾草</th>
<th>ヘイキューブ</th>
<th>ビートパルプ</th>
<th>グルテンフィード</th>
<th>配合飼料</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>6.0</td>
<td>4.0</td>
<td>0</td>
<td>0</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>実験1</td>
<td>8.5%給与区</td>
<td>6.0</td>
<td>4.0</td>
<td>-</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>17%給与区</td>
<td>6.0</td>
<td>4.0</td>
<td>-</td>
<td>17.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>対照区</td>
<td>6.0</td>
<td>3.0</td>
<td>1.0</td>
<td>0</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>実験2</td>
<td>8.5%給与区</td>
<td>6.0</td>
<td>3.0</td>
<td>1.0</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>17%給与区</td>
<td>6.0</td>
<td>3.0</td>
<td>1.0</td>
<td>17.0</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

5. 調査項目と方法

(1) 飼料 飼料摂取量、各供試飼料の一般分析
(2) 乳量 バケットミルカーにより每日秤量。FCM
量はGAIN8の公式によった。
(3) 乳質 本試験期間毎日検査を実施。乳脂率はゲル
ベル法、SNF率はプラスチックビーズ法によった。
(4) 粗効率 BRODYの粗効率によった。

4. 供試飼料と給与法

供試飼料は第20表のとおり、基礎飼料として乾草、
ヘイキューブ、ビートパルプ、生産飼料として配合飼料
とグルテンフィードを用いた。乾草は当センター生産の
イタリアンライグラス乾草、ヘイキューブはアメリカ産
アルファファヘイキューブ、ビートパルプはチリー産、
配合飼料は市販の乳牛用配合飼料である。グルテンフィ
ードは当県のコーヌスタチ工場のものである。

給料給与は日本飼養標準によりTDN値で110%給
与した。供試飼料は第1回目と同様のものである。

第21表 飼料摂取量（一日一頭当たり）

<table>
<thead>
<tr>
<th>区分</th>
<th>必要養分量</th>
<th>給与養分量</th>
<th>摂取養分量</th>
<th>摂取率</th>
<th>探査率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCP</td>
<td>TDN</td>
<td>DCP</td>
<td>TDN</td>
<td>DCP</td>
</tr>
<tr>
<td>対照区</td>
<td>实験1</td>
<td>1.505</td>
<td>12.850</td>
<td>1.958</td>
<td>13.395</td>
</tr>
<tr>
<td></td>
<td>实験2</td>
<td>1.650</td>
<td>13.375</td>
<td>2.036</td>
<td>13.988</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>1.578</td>
<td>13.113</td>
<td>1.997</td>
<td>13.692</td>
</tr>
<tr>
<td>8.5%給与区</td>
<td>实験1</td>
<td>1.505</td>
<td>12.850</td>
<td>1.741</td>
<td>12.765</td>
</tr>
<tr>
<td></td>
<td>实験2</td>
<td>1.650</td>
<td>13.375</td>
<td>1.787</td>
<td>13.691</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>1.578</td>
<td>13.113</td>
<td>1.764</td>
<td>13.328</td>
</tr>
<tr>
<td>17%給与区</td>
<td>实験1</td>
<td>1.505</td>
<td>12.850</td>
<td>1.523</td>
<td>12.134</td>
</tr>
<tr>
<td></td>
<td>实験2</td>
<td>1.650</td>
<td>13.375</td>
<td>1.538</td>
<td>13.394</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>1.578</td>
<td>13.113</td>
<td>1.531</td>
<td>12.764</td>
</tr>
</tbody>
</table>
飼料摂取量は第21表に示した。乾物体重比における平均採食率は、TDN値で対照区9.73％、8.5％給与区9.68％、17％給与区9.66％とほとんど変わらなかった。日本飼育標準の必要摂分量に対する平均摂分摂取率はそれぞれDCP値で124.1％、109.6％、93.6％、TDN値で101.6％、97.6％、94％とグルテンフィード給与区は低下した。

<table>
<thead>
<tr>
<th>区分</th>
<th>飼料体重比</th>
<th>給せんい量</th>
<th>給せんい率</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>実験1</td>
<td>3.22％</td>
<td>3.08％</td>
</tr>
<tr>
<td></td>
<td>実験2</td>
<td>3.06％</td>
<td>3.25％</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>3.14％</td>
<td>3.14％</td>
</tr>
<tr>
<td>8.5％給与区</td>
<td>実験1</td>
<td>2.97％</td>
<td>3.15％</td>
</tr>
<tr>
<td></td>
<td>実験2</td>
<td>2.91％</td>
<td>3.30％</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>2.94％</td>
<td>3.23％</td>
</tr>
<tr>
<td>17％給与区</td>
<td>実験1</td>
<td>2.81％</td>
<td>3.29％</td>
</tr>
<tr>
<td></td>
<td>実験2</td>
<td>2.82％</td>
<td>3.36％</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>2.82％</td>
<td>3.33％</td>
</tr>
</tbody>
</table>

乾物体重比および給せんい率について第22表に示した。乾物体重比は対照区3.14％、8.5％給与区2.94％、17％給与区2.82％ととなった。絙せんい率はそれぞれおおむね3％以上で、給せんい率も16％～20％の範囲で、高かった。

(2) 供試飼料の成分分析
供試した乾草、ヘイキューブ、ピートハルブ、配合飼料およびグルテンフィードの一般成分は第23表のとおりである。その分析値は日本標準飼料成分表に示される値と近似していた。

2. 乳量
試験期の5日間における日給の平均乳量およびFCM量を示すと第24表とおりであるが、飼料間での有意な差はなかった。

3. 乳質
試験期の5日間の平均乳脂率およびSNF率について第25表に示すとおりである。乳脂率はブロック間で影響あった（P<0.01）が、各区間において差はなかった。SNF率もブロック間で影響あった（P<0.05）が、同様に各区間で差はなかった。

4. 給効率・体重
給効率について第26表に示したが、いずれの区にお

第二表 供試飼料一般成分

<table>
<thead>
<tr>
<th>飼料名</th>
<th>原物中 (％)</th>
<th>原物中 (％)</th>
<th>乾物中 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水分</td>
<td>粗蛋白</td>
<td>水分</td>
</tr>
<tr>
<td>乾草</td>
<td>16.40</td>
<td>5.15</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>12.46</td>
<td>7.63</td>
<td>2.07</td>
</tr>
<tr>
<td>ヘイキューブ</td>
<td>17.80</td>
<td>14.30</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>13.18</td>
<td>14.54</td>
<td>1.84</td>
</tr>
<tr>
<td>ピートハルブ</td>
<td>12.09</td>
<td>7.79</td>
<td>0.95</td>
</tr>
<tr>
<td>グルテンフィード</td>
<td>72.10</td>
<td>3.10</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>67.15</td>
<td>3.36</td>
<td>1.45</td>
</tr>
<tr>
<td>配合飼料</td>
<td>11.30</td>
<td>13.60</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>13.10</td>
<td>16.20</td>
<td>1.10</td>
</tr>
</tbody>
</table>

注: a 供試飼料中、上段は実験1、下段は実験2の値を示す。
b 消化率は日本標準飼料成分表による。
東原ら「生グルテンフィードの乳牛肉への給与に関する研究」

第24表 乳量およびFCM量

<table>
<thead>
<tr>
<th>区分</th>
<th>乳量（ml）</th>
<th>FCM量</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>実験1</td>
<td>実験2</td>
</tr>
<tr>
<td>17週給与区</td>
<td>26.05</td>
<td>26.53</td>
</tr>
</tbody>
</table>

第25表 乳脂率およびSNF率

<table>
<thead>
<tr>
<th>区分</th>
<th>乳脂率（％）</th>
<th>SNF率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>実験1</td>
<td>実験2</td>
</tr>
<tr>
<td>8.5週給与区</td>
<td>3.41</td>
<td>2.70</td>
</tr>
<tr>
<td>17週給与区</td>
<td>3.31</td>
<td>2.73</td>
</tr>
</tbody>
</table>

第26表 相効率および体重

<table>
<thead>
<tr>
<th>区分</th>
<th>粗効率（％）</th>
<th>体重（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>実験1</td>
<td>実験2</td>
</tr>
<tr>
<td>8.5週給与区</td>
<td>3.11</td>
<td>3.17</td>
</tr>
<tr>
<td>17週給与区</td>
<td>3.50</td>
<td>3.20</td>
</tr>
</tbody>
</table>

いてもも同様の結果で、有意な差はなかった。
体重については同様に、大きな変動はなかった。

5. 健康状態

何ら異常は認められなかった。

考察

以上のように第1回から第3回まで試験を行なってき、その結果を併せて考察すると次のとおりである。

1. 飼料摂取状況

グルテンフィードは好食性が良く、モイストタイプの飼料として遠ほかとされる。第1回試験の最高20週給与区において、食道や下痢などで、食い止まりがみられたことから食道下痢の原因を明らかと考えられた。グルテ

んである。グルテンフィードの給与量は平均で完全に摂食された。また他には飼料の摂取量もおおむね良好であった。

生態体重量は無給与に代替給与した第1、2回試験にて、対照区に較べていずれもグルテンフィード給与区は低くなり、乾物摂取量の低下を示した。特に第1回目の5週給与区ではわずか2％であった。第3回目の濃厚飼料代替試験では平均2.8％以上となり、適正な値を示した。

粗せんかん量およびせんかん率を検討すると、乾物体重比と同様、グルテンフィード給与区は低くなり、特に第1回試験においては粗せんかん量はかなり低下し、2％を割った。粗せんかん率は乳牛の安全飼養の下限とされる13％4142を下回った。濃厚飼料代替試験では粗せんかん量は2%以上を保持し、粗せんかん率も16％～20％の高い摂取量となった。

これらのことから、摂取高量およびせんかん率からみてグルテンフィードを飼料として多量に利用した場合、乾物量やせんかん量が不足し、乳脂率低下を引き起こす要因となることが示唆された。

2. 飼料の成分

グルテンフィードの飼料価値について、森本42は蛋白質含量が比較的多く、特にグルテンシールを含むものは27%以上になると述べ、蛋白質の品質は良好といえる。ビタミンAは黄色トウモロコシが原料のときは特に多く含有すると42、さらに消化率は反歯歯におかれてかなり高い消化率を示し、特に可溶無機物質は90％以上である49。

供試したグルテンフィードの水分は64～72％と少なかったが、平均では66％位のものが多かった。粗蛋白質含量は4.2％前後と低く、可溶無機物質は26％前後と比較的多い。粗せんかん量は4～5％と高く。粗蛋白質含量は森本42が引用している米国産のものより低く、原物でD C Pが2.7～3.6％、T D N0.25～0.22％、乾物中DC Pは7.1～10％と低く、T D Nは約7%でかなり高かった。ビール粕に較べ、低蛋白質、高カロリーで、可溶無機物質に富む飼料といえる。

なお、グルテンフィードの保存について明細の状態は、空気、通気の影響はコアックに1～2ヶ月保存試験により、ナイガ材に給与したが、時好は良好、保存状態も良好であった。

3. 乳量

須藤49が引用しているHANSEN(1905)の飼料試験によると乾燥グルテンフィードを濃厚飼料と共に給与したところ、乳量は増加し、R A M(1899)は乳牛の生体重100％に相当する給与量で、乳量は増加したと述べている。また興津ら50によるとグルテンフィードを飼料の一部として10％、15％を給与したところ、いずれも乳量は増加したと述べている。

今回の試験では無給与に代替した場合、20％給与で
はグルテンフィード給与区において、乳量増加の傾向があったが、第2回試験の15回給与において変化はなかった。濃厚飼料に代替した場合、グルテンフィードは一般配合飼料と比較して同様の泌乳効果を示した。このことにより、粗飼料として給与した場合には興津らのいう増乳効果の傾向もしくは同等の効果があることが伺った。

4. 乳 質

乳量の増加に対して乳製品の低下を招くという事実にはかなり一致したものがある。これはビール粕の多給によるそれと類似している。

今回の試験では、乳製品において組飼料に代替した場合の20回給与により低下したことを確認した。また、濃厚飼料として17回給与しても低下しなかったことから、粗飼料としての考え方を妥当ではないと考えられた。

S N F率については、組飼料代替で10回、20回給与した第1回試験では全く影響はなく、濃厚飼料代替においても変わりなかった。

5. 粗効率

乳牛の生産効率を粗効率について検討すると、第1回試験では26〜30％、第2回目は30〜31％といずれもグルテンフィード給与による影響はなかった。

体重、乳量と推計された場合の粗効率の平均は2.7 ± 4.3％であったと報告されているが、今回の試験ではこの報告に類似している。

6. 第一胃汁の性状および肝機能

乳メシ汁の性状について第2回目の15回までの試験において検討した。

乳メシ汁のpHについて、栄養素試験で報告している平均値は7.1で、組飼料給与区の水準の低い場合において、pH値はやや低いといえる。また通常pHは6.0〜7.5の範囲に保たれているが、今回の第1回目の試験においては平均7.0前後であった。

VFA組成をモル比でみると、酢酸濃度は飼料間でグルテンフィード給与区が低下する傾向を示し、プロピオン酸は相対的に増加する傾向があり、従ってA/P比も同様に低下の傾向を示したが、いずれも少なくとも4.0以上となった。A/P比についてはその大きさは確定されていないといわれ、国内での平均値は3.8で、組飼料給与においてその比率は低いといわれる。またVFA組成は、酢酸、プロピオン酸、酢酸のモル比が3：1：1とされており、第2回試験では対照区が7.1：1：0.9で、7.5回給与区5.5：1：0.7、15回給与区4.7：1：0.6とグルテンフィード給与区は低比率となった。

アミノ酸窒素については差はなかった。

これらのことから、粗飼料としてのグルテンフィードの多給は、ルーメン内容VFA組成に変化を与え、酸度の減少、乳酸酸性の増加を招き、その結果により乳製品の乳圧を減少させたことが伺える。

7. 健康状態

グルテンフィード給与による肝機能、繁殖障害、乳液炎等の影響の有無についての調査は少ないが、興津らは15回給与区の一部の牛乳が初期に食齢を起こしたと報告している。また藤田はグルテンフィード多給区により乳液炎の発生を認めた。

今回の試験では、20回給与によって食齢、軟便、下痢の経過の症状をみせたが、15回、17回給与区でこのような症状は認められなかった。

肝機能検査の一部として血清比反応により調べたが、ほとんど異常なものは見受けられなかった。

結 論

以上のことからグルテンフィードを乳牛給与した場合の影響について、飼料性、産乳性、乳製品および生産機能の検討結果から考察すると、粗飼料の一部として15回以上の多量を代替することは、乾物摂取量および粗飼料摂取量の低下を招き、さらにルーメン消化においての乳酸酸性の減少、プロピオン酸の増加などVFA組成に影響したこともあり、乳量は増加傾向を示したが、乳製品の乳圧およびS N F率の低下を来たすことが推察された。しかし、濃厚飼料の一部として代替した場合は、17回の多給で組飼料による乾燥量、粗飼料が維持されるため乳量、乳製品および粗効率については影響を認めなかった。これらの結果は、ビール粕多給による諸影響を良くしたと考えられる。

要 約

乳牛に対してグルテンフィードを粗飼料代替として、20回までの給与、15回までの給与、濃厚飼料代替として17回までの給与と試験を実施し、次の結果を得た。

1. 喜好性と飼料摂取状況

飼料摂取量は採食率からみて、グルテンフィードの採食状態は良好で、乾物摂取量は組飼料代替給与において20回給与区では20％と低下したが、濃厚飼料給与で
は2.8％以上となった。飼えん摂取量および飼えん率は、乾物体重比と同様、グルテンフィード給与に比べ低下し、20％給与区において2％以下の摂取および下限とされる13％の飼えん率となったが、濃厚飼料の代替ではそれぞれ3.0％以上、16％以上維持された。
2．グルテンフィードの一般飼料成分は、原物で水分66％前後、粗蛋白2.4％前後、可溶無窒素物26％前後、粗せんいは4.5％前後、粗灰分、粗脂肪、低さんで、可溶無窒素物の比較的高い飼料である。DCP2.7～3.6％、TDN28～32％と推算された。
3．乳量はグルテンフィードを粗飼料として給与した場合、増加の傾向もしくは粗配合飼料と同様の効果があることが伺えた。
4．乳質においても、粗飼料に代替した20％給与により、乳脂率が低下する傾向を示したことが確認された。
5．新効率において各試験の飼料間による差はなく、平均して26～30％の範囲であった。
6．第一胃液の性状を第2回目の15日までの試験について検討したところ、VFP組成モル比において、酢酸はグルテンフィード給与区が低下の傾向があり、プロポロンは相対的に増加する傾向があった。A/F比も同様な傾向で、その値は各区間とも4.0以上であった。血清蛋白質において大きい変動はなかった。
7．健康状態を観察したところ、20％給与区における食欲、下痢等以外の異常症状はみられなかった。血清の酸性反応では異常なものはなかった。

引用文献
1）藤森幸男、松永寛、小野忠義：濃厚飼料の給与（1）、農業報告（1），濃厚飼料が乳脂の生育に及ぼす影響について、大阪府農業センター研修、7，1970
2）森本宏：飼料科学、養殖堂、179，1975
3）農林省畜産試験場：畜産試験場特別報告、4，1，1964
4）農林省農林水産会議事務局編：日本飼料標準（乳牛）、中央畜産會、1974
5）農林省農林水産会議事務局編：日本標準飼料成分表、中央畜産會、1975
6）中村良一、米村寿男、須藤恒三：牛の臨床検査法、農山漁村文化協会、1973
7）中村信孝・ヘイキューブによる乳牛飼養改善の効果、畜産の研究、30，10，41～46，1976
8）興津善徳、市川章雄、池田達雄、鈴木進実：生グルテンフィードの給与が乳量、乳質に及ぼす影響、静岡県畜産試験場、2，3，3，1976
9）須藤浩：カス類飼料の給与法、養殖堂、210，222，1975
10）桜木信次：乳牛給与の生理的限制研究に関する試験、96，1975
11）梅津元昌編：乳牛の科学、農山漁村文化協会、1973
12）吉田清：畜産を中心とした実験計画法、養殖堂、1975
13）吉田正純、小石川常吉、竹下四郎、石井徳藏、洋田清：志賀勝治、山本藤五郎：牛乳無脂固形分率の迅速定量法に関する研究、農林省畜産試験場、16，7，1968
14）全国乳質改善協会：生乳成分の変動要因と改善対策、129，1979