水稲ヤマヒカリの胴割れ米発生に関する研究

（第1報）胴割れ米発生の実態

渡辺 公夫**・児玉 幸弘**

The studies on cracked rice kernel of paddy rice (Yamahikari)

I Investigation into the actual condition of cracked rice kernel of paddy rice.

緒言

米の生産は、消費者の嗜好の変化に伴って、おいしい米としてコシヒカリを中心とした良質米の生産に移行した。しかし、昭和55年以降の異常気象等による4年続きの作況の不安定化により、米の生産性の低下が顕著となった。このため稲作を中心とした土地利用型作物の生産性向上を図るため、地域に選出した品種の再検討を行い、中山間地域ではヤマヒカリの導入が急速に高まった。

近年、ヤマヒカリの作付けが集中している地域を中心に胴割れ米の発生が増加し、品質低下が目立ってき
た。特に、伊賀地域においては、昭和58年以降の作付面積が急増し、昭和61年度には、ヤマヒカリの作付シェアが47.3%に達した。このうち56.5%が胴割れによる被害米として、2・3等米へ格付された。（図1）

胴割れ米は、収穫直後に発生するもので、これを取り扱う方法が、乾燥等、収穫以降の処理作業において発生するものに大別される。

立木や、乾燥等における胴割れ米の発生機構については、一般に米粒が乾燥、劣化、破損等によって外周からの急激な変化を受けたとき米粒組織が均一に変化しないところに原因があり、温度、湿度、降水等に影響されることが多いと報告されている14。また、胴割れ米発生の条件について、品種により胴割れの発生条件が異なることが指摘されている15。

そこで、当県において問題となっているヤマヒカリの胴割れ米発生の防止対策を目的に、胴割れ米発生の実態と原因を調査し、若干の知見を得たので報告する。

材料及び方法

1. 胴割れ米発生実態調査

1）調査場所：伊賀地域のヤマヒカリ作付けは場において、昭和61年度16地点、62年度8地点に調査場を設置し、この場を出穂期に前期（8月9日〜11日頃出穂）中期（8月13日〜15日）、後期（8月18日〜22日）に区分した。また、土壌につ

**伊賀農業センター
***現一志農業改良普及所
いても細粒質（壌土、壌壤土）、中粗粒質（壌土、砂壌土）を調整分けた。

2）調査方法：出穂期後30日から50日までの間
におよそ5日間隔毎に行い、場中中央部の長鰭3本
／株について、収穫前ポリビンを密に掛けて保存した。
なおこの作業は、午前10時から正午までの間に実
施した。

圧割れ率の調査は、脱粒を手で脱粒し、完全粒
200粒中の圧割れ粒数を観察した。

圧割れの有無及び程度の識別は、ケット社製米粒
透視器（簡易型）を用いて、農業機械学会で提案
されている方法により下記のとおり分類した。

全圧割れ粒 = 重圧割れ粒 + 軽圧割れ粒

重圧割れ粒は、穂の完全に検査時に被害粒として
計測され、検査等級の下層を招く程度の圧割れ粒。

軽圧割れ粒は、検査等級に影響がなく、どう言うも
問題にならない程度の圧割れ粒。

総及び玄米の含水率調査については、定温乾燥機
を用い、105℃2日間乾燥後秤量した。なお圧割れ
調査及び総玄米含水率の調査は、水分変化を考慮し
調査日内に行なった。

土壌の含水率の調査は、定温乾燥機を用い、105
℃恒量とした。

気象は、上野測候所を中心として調査地点から
最寄りの測定気温を用いた。

日平均積算気温の算出は、調査地点のヤマヒカリ
の出穂期から毎日の平均気温の積算値とした。

2. 作場試験

1）落水時期に関する試験：昭和61年伊賀農業
センター内の場（細粒黄土色・班紋あり）のヤマヒ
カリ（稲苗5月19日植行移植）を用い、落水時期
を出穂期後15日、25日、35日の3処理とし、刈取
時期を出穂後30日、35日、40日、45日の4処理
で組み合わせ検討した。また、出穂期は8月14日
であった。除草剤は、初期一発処理を施用し、病
害虫防除として、出穂前30日、20日、出穂後5
月に殺虫殺菌剤を施用した。調査方法については、
1の2に準じた。

2）品種別圧割れ発生の難易性に関する試験：昭和
62年伊賀農業センター内で、水稲稲実葉試験場
内の品種（稲苗5月7日植、手植）を用い、ヤ
マヒカリを試験品種として、コシヒカリ、大空、黃
金晴を比較品種として配列した。なお、若干出穂の
遅いヤマヒカリが別の施設試験区の中にあったので、
参考として用いた（稲苗5月15日植）。出穂期は、
ヤマヒカリ1が8月3日、ヤマヒカリ2が8月
6日、コシヒカリ7月28日、大空7月31日、黄金
晴8月8日であった。除草剤は、初期一発処理を
施用し、病害虫防除として、出穂前30日、20日、
出穂後5日に殺虫殺菌剤を施用した。調査方法に
ついては、1の2）に準じた。

結 果

1. 勝割れ米発生実態調査

1）出穂期及び出穂期後日数と勝割れ発生量との関係

出穂期を異にする出穂期後数と全圧割れ粒（軽
圧割れ粒 + 重圧割れ粒）の関係を第2図に示した。

全圧割れ粒の発生は、出穂期が早期で多く、中期、
晩期に遅くなるほど少なくなる。重圧割れ粒の発
生は、図3に示したとおり、出穂中期が40日過ぎ
から、晩期のものはやや遅い、42日過ぎから発生
した。
2) 土壌との関係
出穂期の時期と土壌の種類の違いによる出穂期以降の日平均積算気温と重嘗割割粒発生の関係について、第4図に示した。
重嘗割割粒の発生時期は、細粒質土壌、中粒質土壌とも大差なかったが、礫質土壌では日平均積算気温950℃程度から発生が認められ、他の2つの土壌に比べ発生時期がやや早かった。また、発生割合は、礫質土壌が顕著に高く、つぎに中粒質土壌で高くなる傾向がみられた。

3) 出穂期後の日平均積算気温との関係
出穂期からの日平均積算気温と全剝割割粒との関係を第5図に示した。全剝割割粒の発生は、出穂期後日平均積算気温800℃までほとんど認められなかったが、中粒質土壌においては800℃程度から、細粒質土壌は850℃程度から発生し、積算気温の上昇により曲線的に急増した。

4) 初及び玄米含水率との関係
初及び玄米の含水率と剝割割粒発生の関係を第1表に示した。
初及び玄米含水率と剝割割粒発生の関係は、2次曲線の関係がみられ、重相関係数が0.885、初剝割割粒0.825、玄米剝割割粒0.894、玄米重剝割割粒0.853、と密接な関係が認められた。これらの曲線回帰式から剝割割粒の発生する含水率は、軽剝割割については約26.8%、玄米25.0%、重剝割割では約24.8%、玄米22.4%と推定され、玄米に対し初剝割割の含水率が1.8～2.4%高いところで発生した。また、重剝割割の発生は軽剝割割に比べ2.0～2.6%低い含水率であった。

玄米含水率の減少量と剝割割粒増加量の関係は、第6図に示した。
全剝割割粒率は、玄米含水率の減少量が大きくなるほど発生が急増する2次曲線の関係が認められた。これは、気象等の影響による初や玄米の急激な水分低下が、立毛の剝割割発生に大きく関与していると考えられる。

図6 玄米含水率と剝割割粒率（昭和61年）

図4 出穂期以降の日平均積算気温と重剝割割粒発生（昭和62年）

図5 出穂期以降の日平均積算気温と全剝割割粒発生（昭和61年）

表1 玄米含水率と剝割割粒率

<table>
<thead>
<tr>
<th>因子</th>
<th>回帰式</th>
<th>重相関係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>初含水率</td>
<td>(Y = 308.69 - 2.036X + 0.32X^2)</td>
<td>0.885**</td>
</tr>
<tr>
<td>玄米含水率</td>
<td>(Y = 144.37 - 1.001X + 0.17X^2)</td>
<td>0.825**</td>
</tr>
<tr>
<td>玄米含水率</td>
<td>(Y = 443.42 - 3.299X + 0.61X^2)</td>
<td>0.894**</td>
</tr>
<tr>
<td>玄米含水率</td>
<td>(Y = -230.38 - 1.813X + 0.35X^2)</td>
<td>0.853**</td>
</tr>
</tbody>
</table>
5）刈取り時の気象との関係

伊賀地域におけるヤマヒカリの移植時期は、4月末から5月中旬であるため、収穫時期は9月中旬から9月下旬が一般的である。昭和57年から61年までの5年間の9月中旬から下旬の気象を第7図及び8図に示した。

昭和57年から59年までの天候は、連続的に降雨日がなかったのに対し、60年は降雨日が継続し、61年では秋雨前線の停滞による連続降雨（9月12日～9月20日）と降雨後の晴天（9月21日～9月29日）により高温（最高気温31.9℃）と暴湿（最高湿度27％）であった。第1図に示す60年、61年の割れによる被害の増加からも気象的要因の影響は大きいことが伺える。

2．落水時期との関係

落水時期と割れ粒発生の関係は第2表に示した。割れ粒の発生は、全体に出穂期後41日頃からみられる割れ粒率は、出穂期後落水15日区が最も多く、ついてで25日区、35日区の順となり、落水時期が早いほど高くなり、早期落水が割れ粒の発生を助長していることが認められた。

3．品種との関係

品種別出穂期後日数と全割れ粒発生の関係を第9図に示した。

全割れ粒の発生は、ヤマヒカリ、コシヒカリ、大空が出穂期後45日（日平均積算気温1100℃）を過ぎてから認められなかったが、黄金晴は、調査期間中発生がみられなかった。発生割合は、ヤマヒカリが最も高く、黄金晴、大空の順で日数の経過とともに順次増加した。

粒含水率の推移は、第10図に示したとおり、出穂期後積算気温が増加するにつれて、コシヒカリ、大空、黄金晴にはほぼ同じ傾向で低下するのに対し、ヤマヒカリでは常にこれより低く推移し、積算気温1000℃以降の低下が大きかった。

<table>
<thead>
<tr>
<th>9月</th>
<th>9月</th>
</tr>
</thead>
<tbody>
<tr>
<td>旬</td>
<td>旬</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>61</td>
<td>〇</td>
</tr>
<tr>
<td>60</td>
<td>☀</td>
</tr>
<tr>
<td>59</td>
<td>☀</td>
</tr>
<tr>
<td>58</td>
<td>☀</td>
</tr>
<tr>
<td>57</td>
<td>☀</td>
</tr>
</tbody>
</table>

図7 成熟期の天候

図8 成熟期の平均気温
図9 品種別出穂後日数と全巻割れ率（昭和62年）

図10 品種別糖合水率の推移（昭和62年）

表2 落水時期別の玄米巻割れ粒率、玄米含水率、土壤含水率

<table>
<thead>
<tr>
<th>出穂期後日数</th>
<th>29日</th>
<th>35日</th>
<th>41日</th>
<th>46日</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査項目</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>胞割率</td>
<td>玄米</td>
<td>土壌</td>
<td>胞割率</td>
</tr>
<tr>
<td>出穂期後15日落水区</td>
<td>0 0 28.1</td>
<td>0 0 28.6 24.3</td>
<td>4 21 21.3 19.3</td>
<td>5 23 21.2 16.9</td>
</tr>
<tr>
<td>" 25日 "</td>
<td>0 0 28.7</td>
<td>0 0 29.0 21.5</td>
<td>3 19 21.7 21.5</td>
<td>5 25 21.1 17.8</td>
</tr>
<tr>
<td>" 35日 "</td>
<td>0 0 28.4</td>
<td>0 0 29.2 31.1</td>
<td>1 8 22.3 31.1</td>
<td>3 15 21.5 27.0</td>
</tr>
</tbody>
</table>

重：重巻割れ粒 全：全巻割れ粒
考察

胴割れの発生要因について、中村らは31)、晩生品種より早、中生品種に胴割れが多発したと述べている。また、石倉らは29)、出穂後の経過日数が同一の場合では、早期出穂のものはほど米量の胴割れが著しいとされている。本試験でも同様なことが認められた。出穂期の早晩による発生の違い、成穂期の温度に影響されることが大きく、早出穂ほど高温条件に遭遇するため胴割れが発生しやす、成穂後の後期生長期が長いほど急激な気温変化を受け、このような影響により胴割れが増加すると考えられる。

土壌別にみた胴割れ発生の割合は、黒砂、砂壤土で発生が多く、出穂期も早かった。これらの土壌の吸水性や長期の影響が大きく、胚鱗水分の低下と急激な気温変化を考慮すると、一般に、浅耕土に準ずる土壌であり、農地化が進んでまでなく、苗期からの自然発生の影響が大きいものと推測される。これは報告の試験でもほぼ一致した結果である。さらには、胚鱗による若干温度影響と考えられ、発生量についても差があった。

播及び玄米水分との関係で、玄米の水分含量は、登熟初期に増加し、開花後7～8日頃に最大となり、以降は完熟まで減少する傾向が認められた。胴割れの発生は、ある程度の水分低下が前提であり、胚鱗水分の急激な変化によって生じる。胚鱗水分と胴割れとの関係については、多くの報告があり、石倉ら5)は胚鱗水分22％以下、長戸ら20)20%、田守ら20)20%前後、中村ら30)30%以下で、岡村30)30%以下で無変、5%以下に低下すると発生が次第に多くなり、20%以下では著しく報告されている。本試験でも25％付近から発生が増加し始め50%以下になると急激に増加している。また、胚鱗水分減少が大きくは胴割れ発生量も急増した。

胴割れ粒率と品種差異があることは、古くから言われてきたことである。一般に早生種は、中、晩生種よりも多発する傾向にある、品種間の発生量に差がみられ、ヤマヒカリは最も多かった。また、他の品種より胚鱗水分の移行が低かったことから、前述の気象要因等の影響が大きくであったと言える。

また、病害との関係について、第2図に示した現地胴割れ発生実態調査区における、発生が発生し、晩出穂でもかわらず早い時期から胴割れを認めた。このことは、稲麦株に胴割れ発生が急激なという岡村30)らの報告と一致しており、いずれ病害があると胴割れが発生し、防止に果たす役割は大きい。以上のことから、胴割れの発生は、胚鱗水分の低下と密接な関係があり、これは、土壌、積算気温、落水期等の影響の影響が明らかになった。また、昨年の胴割れ急増を説明する原因として、兼業による基本技術の粗放化や悪天候による収穫作業の遅延、移植時期の早熟化による収穫期の高温、寒温による急激な水分低下、既存の収穫機、乾燥機の能力に対し、作付の集中化を考えられた。しかし、最も根本的なこととして、ヤマヒカリの品種特異（胴割れ易）によることが大きい。

立毛中胴割れの抜本的な対策として、ヤマヒカリに替わる胴割れの少しく、良質、良食味、多収品種の育成がある。しかし、現在これに替わる早熟の有望品種が見当らないことと、ヤマヒカリは、コシヒカリとは同等の良食用で良質米として市場の評価が高いため、作り易い等で捨てて難耐品種である。

そこで、胴割れの防止対策として最も重要なことは、適期刈取りの実施である。刈取り適期については、一般に若葉から肉眼によって判定されているが、この品種は葉色が青くてもよく成熟しているので、緑の色で判断し、適期に収穫することが重要である。早期、早稲植栽作業では、緑の基部の枝条に4～5粒緑色鱗が残っている頃が適期とされている、従来、登熟を終る必要のない温度が800℃といわれているが、立毛中胴割れ（胴割れ）の被害発生の発生率積算気温は950℃であることと、その胚鱗水分率25%ほどであることから、これに数値を刈取り期の判定基準として利用できる。また、土壌の病害の発生、落水期などとも胴割れの発生に影響を及ぼすことから、土づくり、病虫害防除、及び登熟期の水管理等の基本技術の助成に努めることが重要である。

しかし、今日、被害粒が増加しているなかで、適期収穫のみを訴えるだけでは、問題は解決しないようである。それには、これらを誘発している諸条件を変えることが重要である。すなわち、ヤマヒカリへの集中化を避けることが最も重要であり、労力、機械、施設等を配慮し、土壌、気象等の環境条件を踏まえ、地域に合った良質品種を選定として組合せ、適正な作付を推進することであると考える。

通要

ヤマヒカリの胴割れ米発生実態を調査、検討し以下の
結果を得た。
1) 胴割れ米の発生は、出穂早期が出穂期後30日頃、中、晚期で40日頃からみられ、出穂期の早いものほど全（軽十重）胴割れ粒率が高い傾向であった。
2) 土壌との関係について、胴割れ粒の発生時に大差はなかったが、胴割れ粒率については、礫質土壌で著しく高くなった。
3) 全胴割れ粒発生時の出穂期からの日平均積算気温は、中粒粒質土壌で800℃程度、細粒質土壌で850℃程度であった。
4) 軽胴割れ粒発生時の含水率は、粋26.8%, 実米25.0%であり、重胴割れ粒発生時の含水率は、粋24.8%, 実米22.4%と指定された。また、乾水期が早ければ、胴割れ粒率が高くなり、早期落水は、胴割れ発生を助長すると考えられた。
5) 割れ米発生の品種間差異について、ヤマヒカリの胴割れ発生量は、明らかに多かった。

謝辞
本研究にあたり種々御協力いただいた伊賀農業改良普及所、伊賀管内農協の諸氏、担当農家各位、また、とりまとめてあたり、御指導をいただいた、現伊賀農業セントラ栽培研究室長、安田典夫氏に対して、謹んで感謝の意を表します。

引用・参考文献
1) 石倉教光・斎藤武雄・池永昇（1966）：水稲の収穫期と出穂後気温差の関係、農業技術21, 426〜429.
2) 石倉教光・升尾孝一郎（1967）：水稲の立毛落粒の発生、農業技術22, 281〜283.
3) 木根瀧昌光（1968）：胴割れ米の発生と刈取り時期および乾燥法との関係、農業および園芸43 (1), 1247〜1250.
4) 中村公則・原城隆（1966）：胴割れ米発生機構の解体に関する研究、第1報寒冷地における立毛胴割り米発生の実態と加温乾燥に伴う胴割り米発生の変化について東北農試研究第6, 47〜52.
5) 長戸一雄・江幡守任・石川雅士（1964）：胴割れ米の発生に関する研究、日作紀33, (1), 82〜89.
6) 岡村保（1963）：胴割れに関する研究、富山県農水産部資料1〜41.
7) 沢藤真・大橋幸雄・村田信行・中村嘉寿（1969）：水稲の登穂過程の追跡と胴割れ米の発生に関する研究（第2報）、富山農試研究報告2, 79〜87.
8) 田守健夫・松下正一郎（1972）：早生種の刈取時期の判定法と立毛中の胴割れを防ぐために、富山農試研究報告5, 13〜17.
9) 下山律也（1975）：「米の胴割れ測定方法の基準」についての提案、農業機械学会誌38 (2) 253〜254.

SUMMARY
The surveys on the seasonal prevalences of the checked rice kernels in Oryza (Yamahikari), have been done. The synopsis is summarized as follows:
1) The seasonal prevalences of the checked rice kernels varied greatly with the three different stages of heading; in the case of early stage, they were observed at about 30 days after heading and in the case of both middle and late stages, at about 40 days after heading. Thus, the both rates of lightly and heavily checked rice kernels tended to be high at the earlier stage of heading than at the middle and late stages of heading.
2) The differences between the soil textures and the prevailing times of the checked rice kernels were not so large, but their rates were greatly high in the gravelly soil plot.
3) The daily mean cumulative temperatures at the prevailing times of the checked rice kernels were about 800℃ in the medium coarse-textured soil plot, while they were about 850℃ in the fine-textured soil plot.
4) At the prevailing times of the lightly checked rice kernels, the reates of moisture contents in the hulled and unhulled rices were estimated as 25.0% and 26.8%, respectively. Similarly, at the prevailing times of the heavily checked rice kernels, those in the hulled and unhulled rices were estimated as 22.4%
and 24.8%, respectively.
On the other hand, the still earlier drainage stages brought about the higher rates of checked rice kernels; they seemed to hasten the prevailing times of the checked rice kernels.

5) From the results of the differences between the rice varieties, the extent of prevalence of the checked rice kernels in Yamahikari was apparently large.