キャベツ、ブロッコリーのセル成型苗育苗技術に関する研究

礦崎真英・戸谷孝・小西信幸・田中一久

栽培部

要旨

キャベツおよびブロッコリーのセル成型苗育苗においてかん水、追肥の管理技術、矮化剤による徒長防止効果、さらに根巻き防止剤による根巻き防止効果などについて検討した。かん水は晴天日にはトライあたり450mlを1日3回行う必要があり、苗育期間中の追肥（成分N：P：K＝10：5：8）は3回施用することが必要であった。また、苗の徒長防止には矮化剤を本葉2葉期までに250〜500倍液を50〜100ml/セルトレイ葉面散布することが有効であり、根巻き防止剤の利用により適度な根巻きの防止と定植後の活早が促進されることが明らかとなった。

キーワード：セル成型苗、育苗、矮化剤、根巻き防止剤、キャベツ、ブロッコリー

緒言

近年、キャベツ等の重量野菜ではセル成型苗を利用した野菜生産の機械化が目注を集めている。セル成型苗は自家育苗や共同育苗の他にも苗育センター等で大量生産が可能であり、苗生産コストの低減や、育苗と圃場での栽培の分業化を可能にし、大幅な省力化が期待されている。しかし、セル成型苗には次のような問題点があり、早急な対応が必要されている。

まず第一に、セル成型苗は育苗に小容量のセルが連なるトレイを利用するため、慣行の地床育苗に比べ地下部容積が極端に制限され、培土が保持できる水や肥料が制限されることである。このことから、過剰かん水による多湿条件による根の生育不良やかん水不足による苗のしおれ、生育の停滞、もしくは不適切な施肥管理による肥料不足に陥る易いこととなる。

次に、セル成型苗は根鉢を形成すること、定植後、根が根鉢から水平方向に伸長する傾向があり、地床苗に比べ根鉢が土壌表層に形成され易く、定植後、乾燥に弱い（佐藤、1996）ことである。

さらに一枚のトレイで多くの苗を育苗するため、育苗後に展開葉が密集状態になり、光環境が悪化し徒長しやすくなることである。また、年次変動はあるものの、降雨等により、圃場が定植に不適当な条件となり、育苗期間の延長を余儀なくされ、これに伴って徒長もしくは予定以上に草丈が伸長し、機械定植が困難となる可能性もある。

これらのことから、本報告では、キャベツとブロッコリーについてセル成型苗の適切なかん水、追肥管理や矮化剤を利用した苗育中の草丈伸長抑制および根巻き防止剤を利用した根巻きの抑制について検討を行った。

材料及び方法

すべての試験において、品種はキャベツ'松波'、ブロッコリー'グリーンフェイス'を供試した。育苗培土はヤンマー育苗培土、セルトレイは128穴を用いた。育苗は雨よけハウス内で行った。育苗中の追肥は液肥（成分N：P：K＝10：5：8）の500倍液とし、1回につき300〜400ml/セルトレイを施用した。圃場（黒ボック土壌）への定植は、株間35cm、行間125cm、2条植えとし、基肥はN: P2O5 : K2O＝20.0 : 20.5 : 17.5kg/10a，追肥はN: P2O5 : K2O＝6.4 : 4.0 : 5.6kg/10a施用した。定植時に草丈、葉数、定植後2，3週後には草丈、葉数，最大葉の葉幅と葉長，2，3，4週後には開花（植物体を上部から見て、中心を通り最大幅となる葉の先端から先端の長さを計測し開張とした）。そして収穫時にはキャベツでは株重、結球重を、ブロッコリーで
は株重，花栄養などを測定した。なお，これら以外の
調査項目については各試験において特に付記した。

1．かん水率及び施肥量の影響

キャベツおよびブロッコリーを対象として，育苗中の
かん水率を多かん水区（4回/日）9，11，13，15時，
中かん水区（3回/日）9，13，15時，少かん水区
（2回/日）9，13時に行う。1回のかん水率は，晴
天日450mℓ，曇天日300mℓ，雨天日150mℓとし天候によ
り調節した。また同時に，育苗中の追肥を多施肥区では
播種後10，14，18，22日後，中施肥区では播種後10，
15，20日後，そして少施肥区では播種後10，18日後に
それぞれ液肥を施用し，かん水率と施肥量の組み合わせ
試験を行った。なお，育苗中のかん水率はモニターオ式全
自動かん水装置（らくらく散水器，㈱三和サービス）を
用いて行った。生長調査は播種後19，25日後に1区10
株2株で行った。播種は平成5年7月29日，定植は
同年8月26日，収穫はキャベツでは11月14日に，ブ
ロッコリーでは11月20日に行った。基肥はN：P：K＝
20：25：20（kg/10 a）を追肥は9月19日にN：K＝
5：4（kg/10 a）で施用した。

2．矮化剤の影響

矮化剤（成分名：ウニコノールP 0.025％）は手動
式散布器を用い，試験区全面に均一になるよう葉面散布
した。試験1，2では散布量は100mℓ/セリトレイとし
た。

試験1：キャベツを対象として，矮化剤散布時期を本葉
2葉および3葉展開期の2期とし，希釈倍率を250，
500，1000倍液の3段階設定し，組み合わせ試験を行っ
た。また，対照として無処理区を設けた。育苗日は1区
50株，無反復，定植後は1区10株2株で収穫をした。
播種は平成5年3月27日，定植は同年5月10日，収
穫は同年7月30日に行った。

試験2：キャベツ，ブロッコリーを対象とする試験を行っ
た。矮化剤散布時期は本葉2葉および3葉展開期の2期，
希釈倍率を250，500，1000倍液の3段階で，育苗に
日数を25，32，39日間の3段階として，組み合わせ試
験を行った。但し，キャベツに関しては矮化剤散布時期
は本葉2葉展開期のみとした。育苗区はキャベツは1区
50株，無反復，ブロッコリーは1区20株，無反復，定
植後はキャベツ，ブロッコリーとも1区10株，2反復
とした。播種は平成8年7月22，29日および同年8月
5日，定植は同年9月4日，収穫は平成9年2月10日
に行った。

試験3：キャベツを対象として，散布時期は子葉展開期，
希釈倍率は250，500，1000倍液の3段階，散布量は50,
100mℓ/セリトレイの2段階とし，これらの組み合わせ
試験を行った。また，対照区として本葉2葉展開期
500倍，50mℓ/セリトレイの処理区と無処理区を設
定した。育苗区は1区10株，2反復で行った。調査は
播種19，27，34日後に草丈，葉幅，葉数について行っ
た。

3．根巻き防止剤が根鉢形成におよぼす影響

根巻き防止剤（成分名：水酸化第二銅，他に未公開成
分が含まれる）はあらかじめ同剤6g/セリトレイをセ
リトレイの表側および内側に全面塗布し，試験に使用し
た。

試験1：キャベツ，ブロッコリーを対象に，根巻き防止
剤の有無の2水準，育苗日数を29，36，43日間の3水
準の組み合わせ試験を行った。育苗区は1区20株，反
復せず，定植後は1区10株，2反復で行った。播種は平
成4年7月29日，8月5日および8月12日，定植は同
年9月10日，収穫はキャベツ，ブロッコリーをそれぞれ
平成8年12月20日，平成9年2月10日に行った。

また，根巻は，29日間育苗を行った苗の定植時に根
鉢を水洗し，直ちに測定した。発根数は定植2週間後に
圃場から掘り取り，土を十分にふるいた後に，根鉢
表面から出ている根の数を調査した。

試験2：キャベツおよびブロッコリーを対象とした。キャ
ベツについては根巻き防止剤の有無の2水準，追肥の少
肥，慣行の2水準，矮化剤の処理と無処理の2水準の組
み合わせ試験を行った。ブロッコリーについては根巻き
防止剤の有無の2水準，追肥の少肥，慣行の2水準で組
み合わせ試験を行った。キャベツ，ブロッコリーとも矮
化剤は本葉2葉展開期に処理し，また，播種はいずれも平成
9年8月5日，定植は同年9月2日，収穫は同年12月11
日に行った。育苗区は1区20株2反復，定植後は1区
12株，3反復で行った。追肥は，少施肥区では8日間隔
で，慣行区では5日間隔で行った。いずれもN-P-K各成
分10-5-8の液肥を500倍液で1回につき300〜400mℓ
/セリトレイを施用した。

試験3：キャベツを対象に，根巻き防止剤の有無の2水
準，土壌の砂じん率10，50，90％の3水準と組み合わ
せ試験を行った。砂じん率については場内水田から採取し
た黒ボク土を土壌の大きさが2cm以上とその他に分け，
2cm以上の土壌を砂じん率10，50，90％に応じて，重量
比で90，50，10％になるよう混合した。播種は平成10
年7月24日，定植は同年8月18日に行った。調査は定
植20日後に草丈，葉数，葉長，葉幅について行った。

試験4：キャベツを対象に，根巻き防止剤の有無の2水
結果および考察

1. 育苗時の水質及び施肥量が苗の生育ならびに定植後の生育に及ぼす影響

育苗期間中の1日当たり水回数の少ない少水区では播種後19日目の葉数、草丈、葉幅は小さかったが、25日日のそれらも水回数による差はほとんど見られなかった。しかし、播種後19、25日日とも中施肥区の生育が優れる傾向が認められ、少施肥区では、葉数、草丈、葉幅ともに小さく、外観もやや劣化し、生育が劣った（表1）。そして多施肥区の生育がやや劣ったのは施肥が多すぎたため、肥料によるストレスがあったのではないかと思われた。

少水区でやや時期を通じて劣ったこと、また多水区と中水区の生育が小さかったことから、夏期のセル成育苗の増水は1日3回行うのが適当と思われる。また、追肥回数は育苗期間中2回の少施肥区で

表1. キャベツのセル育苗中の灌水。施肥回数が苗の生育に及ぼす影響

<table>
<thead>
<tr>
<th>灌水1) 施肥2)</th>
<th>播種後19日目</th>
<th>播種後25日目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>葉数 (枚)</td>
<td>草丈 (cm)</td>
</tr>
<tr>
<td>多</td>
<td>2.3bc</td>
<td>7.2c</td>
</tr>
<tr>
<td>中</td>
<td>2.6a</td>
<td>7.5bc</td>
</tr>
<tr>
<td>少</td>
<td>2.2bc</td>
<td>7.1cd</td>
</tr>
<tr>
<td>多</td>
<td>2.4ab</td>
<td>7.9ab</td>
</tr>
<tr>
<td>中</td>
<td>2.5a</td>
<td>8.3a</td>
</tr>
<tr>
<td>少</td>
<td>2.4ab</td>
<td>7.9ab</td>
</tr>
<tr>
<td>少</td>
<td>2.2bc</td>
<td>6.7def</td>
</tr>
<tr>
<td>中</td>
<td>2.1c</td>
<td>6.9de</td>
</tr>
<tr>
<td>少</td>
<td>2.0c</td>
<td>6.3f</td>
</tr>
</tbody>
</table>

* ** * * * * * *

表2. ブロッコリーのセル育苗中の灌水。施肥回数が苗の生育に及ぼす影響

<table>
<thead>
<tr>
<th>灌水1) 施肥2)</th>
<th>播種後19日目</th>
<th>播種後25日目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>葉数 (枚)</td>
<td>草丈 (cm)</td>
</tr>
<tr>
<td>多</td>
<td>2.0</td>
<td>6.9b</td>
</tr>
<tr>
<td>中</td>
<td>2.0</td>
<td>7.6a</td>
</tr>
<tr>
<td>少</td>
<td>2.0</td>
<td>6.5c</td>
</tr>
<tr>
<td>多</td>
<td>2.0</td>
<td>6.4cd</td>
</tr>
<tr>
<td>中</td>
<td>2.0</td>
<td>7.0b</td>
</tr>
<tr>
<td>少</td>
<td>2.0</td>
<td>6.1d</td>
</tr>
<tr>
<td>多</td>
<td>2.0</td>
<td>6.3cd</td>
</tr>
<tr>
<td>少</td>
<td>2.0</td>
<td>6.4cd</td>
</tr>
<tr>
<td>少</td>
<td>2.0</td>
<td>5.6e</td>
</tr>
</tbody>
</table>

* ** * * * * * *
表3. 矮化剤がキャベツの草丈および収量に及ぼす影響

<table>
<thead>
<tr>
<th>散布時期</th>
<th>希釈倍率 (倍)</th>
<th>定植時</th>
<th>収穫時</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>草丈 (cm)</td>
<td>葉数 (枚)</td>
<td>地上部重 (g/株)</td>
</tr>
<tr>
<td>2葉期</td>
<td>250</td>
<td>10.1±1.00</td>
<td>3.4±0.21</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>10.6±0.94</td>
<td>3.5±0.23</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>12.1±1.01</td>
<td>3.7±0.30</td>
</tr>
<tr>
<td>3葉期</td>
<td>250</td>
<td>11.5±1.11</td>
<td>3.5±0.23</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>11.4±1.10</td>
<td>3.5±0.31</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>12.0±1.07</td>
<td>3.5±0.25</td>
</tr>
<tr>
<td>無処理</td>
<td></td>
<td>12.4±1.26</td>
<td>3.6±0.31</td>
</tr>
</tbody>
</table>

±SD (n=50), ns有意差なし

図1. 矮化剤処理が定植後のキャベツの開張に及ぼす影響

処理 無処理

写真1. 矮化剤による伸長の抑制

は明らかに生育が劣ったことから、3回の追肥が必要であると思われた。

プロッコリーは施肥回数についてはキャベツと同様の傾向が見られ、かん水回数については多かん水区で最も生育が優れていた（表2）。また、かん水回数の減少に伴う乾燥などによる苗質低下よりも育苗期間中の施肥回数の影響が大きかった。藤原ら（1998）は育苗後期の施肥の中断は苗の窒素含有率を低下させ、葉緑素含量の低下、そして光合成能力が低下する結果、苗の発根力が低下し、活性が遅れることが明らかにしている。このことは育苗時期の施肥管理が定植後の初期生育への影響が大きいことを示しており、先に示した適切な施肥管理が必要であると思われた。

2. 矮化剤が育苗中のセル成長型苗の地上部の生育に及ぼす影響

試験1：キャベツ苗に矮化剤を用いる時期が早いほど、また、希釈度が低いほど草丈の伸長を抑制する効果は大きかった。定植時の無処理区の草丈が12.4cmであったのに対し、2葉期、250倍液処理区では10.1cmと、約20％短くなったが、1000倍液処理区ではいずれの散布時期においても、無処理区と有意な差はなく、抑制効果は低かった（表3、写真1）。定植時の葉数に関しては処理区間に差は認められなかった。

また、定植2週間後の葉の開張を見ると2葉期、250倍液処理区では無処理区の80％で大きく下回り、他の無処理区の93～106％であった（図1）。3、4週
間後には1000倍液処理区では2葉期、3葉期処理とも100％以上となったが、他の区では無処理区との差がなくなくなる傾向は見られたが、92～96％にとどまり、定植1ヶ月後でも無処理区に比べ、株の開張はやや小さかった（図1、写真2）。しかし、収穫時の地上部重、結球重とも処理区間差は認められなかった（表3）。これは、キャベツは定植後3～4週間で隣接株の葉が接し始め、次第に多くの葉が重なり合うので、開張が1層2層92～96％であっても葉球に必要な葉面積は確保できるためと推察された。

以上のことから、本葉2～3葉期に矮化剤250～500倍液を使用することにより、収量に影響なく、定植時の草丈を抑制できることが明らかになった。

試験2：キャベツ苗の草丈は、育苗期間が32日では14.4cm、39日になると14.5cmに達し、機械定植を前提とする苗としてはやや長すぎる。しかし、矮化剤を250～500倍希釈で処理すると、39日育苗でも500倍液区で12.2cm、250倍液区では11.4cmと2～3cm短くなる。25日間育苗の無処理区11.2cmとはほぼ同程度の草丈になった。また、育苗期間の延長に伴い葉数は増加したが、矮化剤処理による影響は認められなかった（表4）。

定植後の生育についてみると、矮化剤処理により株の開張は小さくなったが、葉数への影響のないことは試験1の結果と同様であった。収量に関しても結球重では処理区間差が認められるものの、矮化剤の希釈倍率または育苗日数による明らかな傾向は認められなかった（表5）。これからのことから、キャベツにおいて本葉2葉期に矮化剤を散布することにより、通常の育苗期間より2週間程度延長しても、収量に直接影響することなく、機械定植に適合する草丈の育苗が可能であることが推察された。

プロコリーにおいては、定植時の無処理区の草丈が

表4　キャベツ2葉期苗への矮化剤散布の影響

<table>
<thead>
<tr>
<th>育苗日数（日）</th>
<th>矮化剤倍率（倍）</th>
<th>草丈（cm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>25</td>
<td>9.1±0.69</td>
</tr>
<tr>
<td>500</td>
<td>25</td>
<td>9.1±0.69</td>
</tr>
<tr>
<td>無処理</td>
<td>25</td>
<td>11.2±0.87</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>9.1±0.69</td>
</tr>
<tr>
<td>無処理</td>
<td>500</td>
<td>11.2±0.87</td>
</tr>
<tr>
<td>39</td>
<td>500</td>
<td>11.2±1.03</td>
</tr>
<tr>
<td>無処理</td>
<td>500</td>
<td>14.5±1.19</td>
</tr>
</tbody>
</table>

±SD (n=50)

表5　矮化剤、育苗日数が定植後のキャベツの生育および収量に及ぼす影響

<table>
<thead>
<tr>
<th>矮化剤剪定後2週日</th>
<th>育苗日数（日）</th>
<th>葉数（枚）</th>
<th>開張（cm）</th>
<th>結球重（g/株）</th>
<th>地上部重（g/株）</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>25</td>
<td>7.7 ab</td>
<td>23.1 a</td>
<td>846 g</td>
<td>2.095</td>
</tr>
<tr>
<td>32</td>
<td>9.2 c</td>
<td>26.4 cde</td>
<td>33.1 a</td>
<td>833 g</td>
<td>2.052</td>
</tr>
<tr>
<td>25</td>
<td>11.2 c</td>
<td>37.5 cd</td>
<td>983 b</td>
<td>2.204</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>500</td>
<td>7.6 a</td>
<td>24.9 abc</td>
<td>1029 c</td>
<td>2.303</td>
</tr>
<tr>
<td>32</td>
<td>9.3 c</td>
<td>27.4 de</td>
<td>39.1 d</td>
<td>867 ab</td>
<td>2.099</td>
</tr>
<tr>
<td>39</td>
<td>11.5 c</td>
<td>39.3 de</td>
<td>1021 c</td>
<td>2.162</td>
<td></td>
</tr>
<tr>
<td>無処理</td>
<td>25</td>
<td>8.1 b</td>
<td>28.5 fg</td>
<td>10.0 b</td>
<td>36.8 bcd</td>
</tr>
<tr>
<td>32</td>
<td>9.4 c</td>
<td>30.1 g</td>
<td>11.5 c</td>
<td>41.3 e</td>
<td>936 abc</td>
</tr>
<tr>
<td>39</td>
<td>9.9 d</td>
<td>27.7 df</td>
<td>11.5 c</td>
<td>41.1 e</td>
<td>923 abc</td>
</tr>
</tbody>
</table>

*5％水準、**1％水準で有意差あり、ns有意差なし。同一英小文字を付した水準間にはL.s.d. 5％で有意差なし、有意な交互作用なし.
表6．矮化剤、育苗日数がブロッコリーの生育および収量に及ぼす影響

<table>
<thead>
<tr>
<th>矮化剤希釈倍率（倍）</th>
<th>矮化剤育苗日数（日）</th>
<th>矮化剤処理時葉数（枚）</th>
<th>定植時</th>
<th>收穫時</th>
<th>地上部重（g／株）</th>
<th>花の重（g／株）</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>2</td>
<td>3.5±0.83</td>
<td>10.0±0.34</td>
<td>1,740</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.8±0.29</td>
<td>10.2±0.34</td>
<td>1,839</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>4.2±1.01</td>
<td>8.0±0.67</td>
<td>2,023</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.8±0.54</td>
<td>12.0±0.38</td>
<td>1,927</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>4.5±0.72</td>
<td>10.0±0.43</td>
<td>1,887</td>
<td>412</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.9±0.36</td>
<td>11.1±0.49</td>
<td>1,989</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>2</td>
<td>3.3±0.75</td>
<td>8.8±0.47</td>
<td>1,896</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.6±1.42</td>
<td>10.1±0.41</td>
<td>1,925</td>
<td>471</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>4.2±0.61</td>
<td>8.5±0.34</td>
<td>2,034</td>
<td>493</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.6±1.57</td>
<td>12.2±0.36</td>
<td>1,855</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>4.1±1.33</td>
<td>10.6±0.36</td>
<td>2,000</td>
<td>467</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.4±2.41</td>
<td>10.1±0.36</td>
<td>1,960</td>
<td>469</td>
<td></td>
</tr>
<tr>
<td>無処理</td>
<td>2</td>
<td>3.1±0.64</td>
<td>12.8±0.36</td>
<td>1,800</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.9±0.99</td>
<td>12.3±0.46</td>
<td>1,774</td>
<td>467</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>4.7±1.38</td>
<td>12.3±0.56</td>
<td>1,799</td>
<td>438</td>
<td></td>
</tr>
</tbody>
</table>

1) 花の重：直下から切出した重さ、±SD（n=20）、ns有意差なし

25日間育苗で12.8cmであるのに対し、32、39日間育苗では12.3cmとわずかではあるが短かった。これは播種日の違いに伴う気象条件の影響であると思われ、この影響は他の処理区にも zieひいていると推察された。しかしながら、いずれの育苗期間でも矮化剤処理による草丈伸長抑制効果が認められた。また、矮化剤の希釈倍率が低いほどその効果は大きくなくなる傾向は認められたものの、250倍液と500倍液の両区の間で差が認められない場合や逆転しているものも認められた。ブロッコリーはキャベツに比べ、薬剤に対する感受性が低いのではないかと考えられる。

定植後の生育は、500倍液処理、39日育苗区を除き、いずれの区も定植初期の株の開張は無処理区より劣り、特に250倍液処理区では著しく劣った。株の開張は定植後の日数経過と共に無処理区のそれに近づく傾向が見られたが、希釈倍率の低いほど、また育苗期間が短いほど無処理区の開張に近づくのに多くの日数を要すると思われた。これは希釈倍率が低いほど、また育苗期間が短いほど、薬剤の残効が定植後にも及んでいることも考えられる。ブロッコリーの花の重は矮化剤処理の影響は認められなかった（表6、図2）。

このように、ブロッコリーにおいて本葉2～3葉期に矮化剤250～500倍液を使用することにより収量に影響することなく、育苗中の草丈を抑制することが可能である。
表7．キャベツ子葉展開期の矮化剤散布処理がその後の生育における影響

<table>
<thead>
<tr>
<th>希釈倍率</th>
<th>散布量（ml/セートレイ）</th>
<th>播種19日後</th>
<th>播種27日後</th>
<th>播種34日後</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>100</td>
<td>4.13a 1.69a 1.7</td>
<td>5.56a 2.53a 2.8</td>
<td>6.8a 5.63a 3.4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.87b 1.98b 1.8</td>
<td>7.08b 2.91b 2.7</td>
<td>8.9b 6.49bc 3.6</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>4.87b 1.97b 1.8</td>
<td>7.18b 2.82ab 2.5</td>
<td>9.8b 6.50bc 3.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.56c 2.17c 1.8</td>
<td>8.72c 3.15b 2.6</td>
<td>10.3c 6.58bc 3.5</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>5.95c 2.25cd 1.8</td>
<td>9.20cd 3.03b 2.7</td>
<td>10.9cf 6.62bc 3.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6.87d 2.34de 1.8</td>
<td>9.88d 3.15b 2.5</td>
<td>11.9ef 6.80b 3.6</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td></td>
<td>9.39d 3.00b 2.6</td>
<td>9.5bd 6.06ac 3.6</td>
</tr>
<tr>
<td>無処理</td>
<td>7.27d 2.46e 1.7</td>
<td></td>
<td>9.85d 2.96b 2.9</td>
<td>12.4f 7.76b 3.8</td>
</tr>
</tbody>
</table>

** * 1%、* 5%水準で有意差あり、同一英文字幅にはL、S、D、5%で有意差なし

写真3．根巻き防止剤の効果
キャベツ‘松波’、播種25日後に撮影

試験3．キャベツの子葉展開期に矮化剤を処理することにより、播種19日後では1000倍液、50ml/セートレイ散布区を除き、いずれの区においても草丈の伸長は抑制された。播種27日後については250、500倍液処理区はいずれも草丈は抑制されたが、1000倍液処理区は無処理区との差が認められなかった。播種34日後でも1000倍液処理区は無処理区との差がなく、十分な矮化効果は認められなかったが、その他の区は矮化効果が認められた。また、播種後34日後の250および500倍液散布区の草丈は2葉期、500倍液50ml/セートレイ散布区と同程度もしくはより低くなった。（表7）。

以上のことから、キャベツにおいて子葉展開期に矮化剤250〜500倍液を50〜100ml/セートレイ散布処理することにより、2葉期での処理と同等の効果が期待できることが明らかとなった。また、定植後の開放などへの影響については本葉2葉期処理よりも処理時期が早いことから、さらに少ないと考えられるが、今後、検討が必要である。

一般に、キャベツ、ブロッコリーともに定植適期の苗は本葉2〜3葉とされており、草丈は9〜12cmである。長雨などにより、定植が遅延する場合においても、定植適期苗の形状の維持を可能にするためには、矮化剤を2葉期頃までの早めに散布処理をする必要があると考えられる。

矮化剤は高濃度で、大量に散布をすると生育が過度に抑制されることがあり、ジベレリンによる生育回復の実験も行われている。一般にビンガム等によると、矮化剤と散布量の設定は慎重に行う必要がある。効果と薬剤の画分を選択するとキャベツ、ブロッコリーの機械定植苗の育苗に最適な希釈倍率および散布量を250倍液を50ml/セートレイ、もしくは500倍液、100ml/セートレイと考えられるが、現在、農薬登録されているのはキャベツのみである。

また、本試験ではワニコナゾールPを用いたが、同様の効果がプロクトブリザール、クロムオートなどでいずれも草丈抑制効果が高いと報告されている（時枝、1994）。また、レタス、ダイコン、スイカ、トマト、ナスなど多くの作物でも同様の試みがあり、今後も多くの場面での利用が期待される。

3．根巻き防止剤が根糸形成に及ぼす影響
試験1．キャベツ、ブロッコリーともに、通常、セートレイを使用すると根糸の底から上方に向かって根巻き状に根が巻きいれる「根巻き現象」が見られる。根巻き防止剤を使用すると苗の根糸表面に根が全く認められず
（写真3）。処理区の地下部を洗うと、根鉢の表面には見られない細かい根が、セル内全体に広がっていることが認められた（写真4）。根長は対照区のセル内のキャベツ、ブロッコリーがそれぞれ14.4cm、15.5cmであったのに対し、処理区では6.6cm、9.7cmと著しく短くなり、根巻き現象が抑制されることが示された（表8）。

表9. 根巻き禁止剤処理が定植時のキャベツの草丈、葉数に及ぼす影響

<table>
<thead>
<tr>
<th>育苗期間 (日)</th>
<th>根巻き禁止剤</th>
<th>草丈 (cm)</th>
<th>葉数</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 処理</td>
<td>14.47±1.49</td>
<td>5.40±0.55</td>
<td></td>
</tr>
<tr>
<td>無処理</td>
<td>13.72±1.35</td>
<td>5.13±0.51</td>
<td></td>
</tr>
<tr>
<td>36 処理</td>
<td>14.46±1.31</td>
<td>4.50±0.42</td>
<td></td>
</tr>
<tr>
<td>無処理</td>
<td>13.98±0.66</td>
<td>4.28±0.30</td>
<td></td>
</tr>
<tr>
<td>29 処理</td>
<td>12.26±1.08</td>
<td>3.55±0.32</td>
<td></td>
</tr>
<tr>
<td>無処理</td>
<td>11.90±0.83</td>
<td>3.43±0.41</td>
<td></td>
</tr>
</tbody>
</table>

±SD (n=20)

表10. 根巻き禁止剤が根数に及ぼす影響

<table>
<thead>
<tr>
<th>育苗期間 (日)</th>
<th>処理</th>
<th>無処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>24.6±4.62</td>
<td>27.8±8.96</td>
</tr>
<tr>
<td>無処理</td>
<td>15.0±3.46</td>
<td>27.8±8.96</td>
</tr>
</tbody>
</table>

表11. 根巻き禁止剤、育苗区数がキャベツ、ブロッコリーの生育および収量に及ぼす影響

<table>
<thead>
<tr>
<th>作物名</th>
<th>根巻き禁止剤</th>
<th>根巻き禁止剤</th>
<th>育苗区数 (日)</th>
<th>栽培1ヶ月後</th>
<th>収穫時</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>葉長 (cm)</td>
<td>収穫重 (g/株)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>植株数 (g/株)</td>
<td>花袋重 (g/株)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>キャベツ</td>
<td></td>
<td></td>
<td>29</td>
<td>16.1</td>
<td>2.031</td>
</tr>
<tr>
<td>処理</td>
<td></td>
<td></td>
<td>36</td>
<td>16.1</td>
<td>2.288</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>15.7</td>
<td>2.004</td>
</tr>
<tr>
<td>無処理</td>
<td></td>
<td></td>
<td>29</td>
<td>15.3</td>
<td>1.996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>15.3</td>
<td>2.312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>15.8</td>
<td>2.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>ブロッコリー</td>
<td></td>
<td></td>
<td>29</td>
<td>16.7</td>
<td>2.142</td>
</tr>
<tr>
<td>処理</td>
<td></td>
<td></td>
<td>36</td>
<td>17.8</td>
<td>2.226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>16.6</td>
<td>2.367</td>
</tr>
<tr>
<td>無処理</td>
<td></td>
<td></td>
<td>29</td>
<td>16.6</td>
<td>2.310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>17.6</td>
<td>2.134</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>17.0</td>
<td>2.092</td>
</tr>
</tbody>
</table>

1) 花袋直下から切斷した重さ、ns有意差なし 有意な交互作用なし
表12．根巻き防止剤がキャベツの生育に及ぼす影響

<table>
<thead>
<tr>
<th>根巻き防止剤</th>
<th>施肥</th>
<th>矮化剤希釈倍数（倍）</th>
<th>定植時</th>
<th>定植後日数</th>
<th>収穫時</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>草丈(cm)</td>
<td>葉数(枚)</td>
<td>開張葉数(cm)</td>
</tr>
<tr>
<td></td>
<td>慣行</td>
<td>500</td>
<td>10.0a</td>
<td>4.0a</td>
<td>37.0a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>14.6c</td>
<td>3.5ab</td>
<td>38.6a</td>
</tr>
<tr>
<td></td>
<td>少肥</td>
<td>500</td>
<td>6.8d</td>
<td>3.0c</td>
<td>27.4bc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>8.5bf</td>
<td>3.3bc</td>
<td>29.9b</td>
</tr>
<tr>
<td></td>
<td>慣行</td>
<td>500</td>
<td>9.1b</td>
<td>3.7a</td>
<td>36.2a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>13.8c</td>
<td>4.0a</td>
<td>38.4a</td>
</tr>
<tr>
<td></td>
<td>少肥</td>
<td>500</td>
<td>7.3de</td>
<td>3.0c</td>
<td>26.2c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>8.1ef</td>
<td>3.1c</td>
<td>28.2bc</td>
</tr>
</tbody>
</table>

*5 %水準、**1 %水準で有意差あり

表13．根巻き防止剤がブロッコリーの生育および収量に及ぼす影響

<table>
<thead>
<tr>
<th>根巻き防止剤</th>
<th>施肥</th>
<th>定植時</th>
<th>定植後日数</th>
<th>収穫時</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>草丈(cm)</td>
<td>開張葉数(cm)</td>
<td>開張葉数(枚)</td>
</tr>
<tr>
<td></td>
<td>慣行</td>
<td>13.4a</td>
<td>35.5a</td>
<td>6.8a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.4b</td>
<td>24.3b</td>
<td>5.8b</td>
</tr>
<tr>
<td></td>
<td>少肥</td>
<td>11.7a</td>
<td>30.5a</td>
<td>6.7a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.4b</td>
<td>22.2b</td>
<td>5.4b</td>
</tr>
</tbody>
</table>

*5 %水準、**1 %水準で有意差あり、ns 有意差なし

収量も、キャベツ、ブロッコリーともに差は認められなかった（表11）。

試験2：まず、キャベツ（表12）についてみると、根巻き防止剤の処理は定植後の草丈を大きく、定植後も処理区の開張が無処理区のそれより大きくなる傾向が見られた。特に収量については少肥料区では無処理区の1,439g/株に比べ、根巻き防止剤処理区では1,747g/株。同様に矮化剤処理を行なえなかった肥料区で栽培されたとき、根巻き防止剤処理を行なわなかった無処理区1,498g/株に対し処理区は1,782g/株となった。また、慣行施肥区でも根巻き防止剤を利用した区が、結球重が増加する傾向が認められた。育苗中肥料は苗の生育への影響は大きく、肥料区の草丈、葉数は慣行区を大きく下回った。定植後も肥施肥区の生育は劣り、根巻き防止剤処理を行わなかった区では結球重も小さかった。矮化剤処理は慣行、少肥料の両条件で育苗時の草丈伸長を抑制し、定植後の開張をやや抑制するが、収量には影響は見られなかった。

ブロッコリー（表13）についてみると、根巻き防止剤処理区は定植時の生育、定植後の開張、葉数、結球重等いずれも無処理区を上回る傾向が見られた。また、巻き防止剤の処理の有無に関わらず、少肥料区の定植時の生育は慣行区より著しく劣り、草丈、葉数とも慣行区を下回った。

これら2つの試験結果から、根巻き防止剤の利用により、過度の根巻き現象の抑制が可能となり、同時に定植後の発根および地上部の生育が促進されることが示された。また、育苗中の吸収根の増加により根の吸収が向上する可能性も示唆された。しかしそ、佐々木ら（1996）は草丈には有意な差が認められず、地上部の新鮮重は根巻き防止剤の利用によりやや劣ると報告しており、本試験の結果とは異なる。今後さらに十分な検討が必要である。

試験3：キャベツの草丈、葉数、最大葉厚、最大葉幅などの地上部の生育はいずれの条件でも根巻き防止剤処理区の方が無処理区より優れていた。また、磷素率
図3. 砂性土および根巻き防止剤が定植後に生育に及ぼす影響
定植2週間後に調査した。●：根巻き防止剤処理 ○：無処理

表14. 異なる圃場条件下における根巻き防止剤処理がキャベツの生育に及ぼす影響

<table>
<thead>
<tr>
<th>根巻き防止剤</th>
<th>圃場条件</th>
<th>かん水日数</th>
<th>草丈</th>
<th>葉数</th>
<th>引き抜き抵抗値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(日)</td>
<td>(cm)</td>
<td>(枚)</td>
<td>(g/株)</td>
</tr>
<tr>
<td></td>
<td>水田</td>
<td>1</td>
<td>7.5 ab</td>
<td>3.4 abc</td>
<td>178.6 a</td>
</tr>
<tr>
<td>処理</td>
<td></td>
<td>3</td>
<td>8.7 bc</td>
<td>4.1 e</td>
<td>307.9 bcd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10.0 bc</td>
<td>4.2 e</td>
<td>336.8 bcde</td>
</tr>
<tr>
<td>煙</td>
<td>1</td>
<td>7.0 a</td>
<td>3.3 ab</td>
<td></td>
<td>372.6 de</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.4 b</td>
<td>3.9 de</td>
<td></td>
<td>464.6 f</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.7 bc</td>
<td>4.1 e</td>
<td></td>
<td>510.4 f</td>
</tr>
<tr>
<td>無処理</td>
<td>水田</td>
<td>1</td>
<td>7.0 a</td>
<td>3.3 a</td>
<td>213.5 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>7.0 a</td>
<td>3.4 abc</td>
<td>217.1 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8.4 b</td>
<td>3.8 cde</td>
<td>259.0 ab</td>
</tr>
<tr>
<td>煙</td>
<td>1</td>
<td>6.7 a</td>
<td>3.1 a</td>
<td></td>
<td>283.7 abc</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.6 ab</td>
<td>3.7 bcd</td>
<td></td>
<td>348.1 cde</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.0 bc</td>
<td>4.0 de</td>
<td></td>
<td>387.4 e</td>
</tr>
</tbody>
</table>

** 1％水準で有意差あり，ns 有意差なし，同一英小文字間にはL.S.D. 5％で有意差なし，いずれの調査も定植1週間後に行った

が低下すると，葉数，葉長，葉幅は減少する傾向が認められたが，草丈は砂性土50％の時，最高値を示し，砂性土が10％に低下したり，90％まで高くなると，低くなる傾向が認められた（図3）。

試験4：根巻き防止剤の使用により，水田条件では草丈が高くなる傾向が見られ，引き抜き抵抗値が無処理区に比べ大きくなった（表14）。また，葉数はかん水日数が多いほど大となり，根巻き防止剤処理，圃場条件による差は認められなかった。また，引き抜き抵抗値は，水田での1日かん水区で根巻き防止剤処理株の引き抜き抵抗値が無処理区のそれよりやや少なかったことを除き，他条件が同じであれば根巻き防止剤処理株の本圃での引き抜き抵抗値はより増加した。この時の水域水分含量を見ると（表15），水田では地表面から6cmでは10.7％,
表15. 定植時の圃場土壌水分含量および碎土率

<table>
<thead>
<tr>
<th>土壌</th>
<th>地表面から</th>
<th>土壌水分含量</th>
<th>土壌の大きさ (%)</th>
<th>碎土率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>の 距 離</td>
<td>(cm)</td>
<td>1 mm以下</td>
<td>1.0～2.0mm</td>
</tr>
<tr>
<td>水田</td>
<td>0～6</td>
<td>10.7</td>
<td>66.6</td>
<td>31.4</td>
</tr>
<tr>
<td></td>
<td>7～12</td>
<td>30.7</td>
<td>71.3</td>
<td>25.4</td>
</tr>
<tr>
<td>煙</td>
<td>0～6</td>
<td>7.9</td>
<td>90.4</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>7～12</td>
<td>22.6</td>
<td>92.4</td>
<td>7.6</td>
</tr>
</tbody>
</table>

7～12cmでは30.7%であったが、畑地でそれぞれ7.9%と22.6%で水田に比べかなり乾燥状態にあった。したがって、適湿な土壌条件のときだけでなく、乾燥条件下でも根巻き防止剤の発根促進が一部き引き抜き抵抗値の増大となることが示唆された（表15）。また、畑地の引き抜き抵抗値が相対的に高い値を示したのは、水田に比べ、発根量が増加したことと、水田の碎土率97%前後に対して、畑地では100%であったことから表土が固くなっていたことも原因となっていると考えられる。

以上の結果から、根巻き防止剤の利用は、根巻き形成を抑制し、通常のセルトレイで育苗された苗ではその根系が土壌表層に集中しかたであるが、これを緩和し、育苗中の肥料条件や定植後の土壌の水分条件に大きく左右されることなく、根の機能を発揮するのではないかと思われた。

引用文献
1）藤原隆広・吉岡宏・坂上修（1998）：セル成型育苗における液肥による追肥の節減時期が苗質に及ぼす影響、平成9年度野菜・花き試験研究要覧（国立）
2）時枝茂行（1994）：平成6年度課題別研究会資料
3）竹川昌広（1995）：キャベツ育苗時のわい化け処理量、わい化け処理後のジベレリン処理、兵庫中央農業技術センター成績集
4）農林水産省野菜・茶業試験場発行：「キャベツのセル成型苗育苗管理マニュアル」（1997）
5）佐々木秀和・小田雅行・岡田邦彦（1996）：根鉢形成抑制剤がセル成型苗の生育と活着に及ぼす影響、平成8年度野菜・花き試験研究要覧（国立）
Studies on raising techniques of plug seedlings in cabbage and broccoli

Masahide ISOZAKI, Takashi TOYA, Nobuyuki KONISHI
and Kazuhisa TANAKA

Abstract

We carried out a few experiments to raise the cabbage and broccoli plug-seedlings with suitable plant-length and vigorous rooting ability for the transplanting. The irrigation should be made on fine days three times a day amounting to 450mℓ per tray and the liquid fertilizers should also be applied three times during the raising period. The over-growth of shoot in plug-seedlings could be prevented by spraying 50 to 100mℓ of growth retardant diluted with water to 250 to 500 times on a tray at the stage of the 2nd true-leaf expansion. The root spiraling taking place in cell was prevented by the use of the trays coated with chemicals containing cupriferous compounds. Thus, the management of watering and side-dressing and the utilization of growth retardants and chemicals preventing root-spiraling were proved to be effective in establishment of plug-seedlings.