シリカ基板上に沈着させた銀微粒子の光学特性に及ぼす チタニア微粒子の影響

橋本典嗣*,橋本忠範**,那須弘行**,山本佳嗣***,新島聖治*

The Effect of Titania Particles on Optical Properties of Silver Particles Deposited on the Silica Glass Substrate

Noritsugu HASHIMOTO, Tadanori HASHIMOTO, Hiroyuki NASU, Yoshitsugu YAMAMOTO and Seiji NIIJIMA

Ag and TiO₂ particles prepared by the evaporation-condensation method and spray pyrolysis, respectively, were mixed in N₂ gas flow, and then deposited on the SiO₂ glass substrate to form a film. Optical properties of the films thus obtained were estimated using UV-Visible spectrophotometer and Z-scan technique. As a result, the absorption peak wavelength of Ag particles due to localized surface plasmon resonance (LSPR) was shifted toward longer wavelength side with increasing the concentration of Ti(OC₃H₇)₄ used as a starting material of TiO₂ particles. This indicates that LSPR peak of Ag particles are strongly influenced by TiO₂ particles. Therefore, this method was useful to develop tunable LSPR devices such as optical switches and sensors. Meanwhile, nonlinear refractive index determined by Z-scan technique was negative.

Key words: Ag, TiO₂, Nano-Particle, Localized Surface Plasmon Resonance, UV-Visible Absorption Spectroscopy, Optical Nonlinearity, Evaporation-Condensation Method, Spray Pyrolysis

1. 緒言

金,銀や銅などの貴金属微粒子は局所場表面プ ラズモン共鳴(localized surface plasmon resonance, LSPR)によって,可視光領域において 特有の光吸収を示すことがよく知られており,こ の特徴は古くからステンドグラスなどに利用され ている.これらの微粒子の中で,銀微粒子は非線 形光学応答の速さ¹⁾と LSPR による光学非線形性 の増大²⁾から非線形光学材料として期待されてい る.

LSPR による金属微粒子の光吸収波長は周囲の 物質の誘電率, すなわち屈折率の関数であること

*	窯業研究室材料開発グループ
* *	三重大学工学部
* * *	窯業研究室伊賀分室

がよく知られている.吸収係数αは波長の関数として次式で表される³⁾.

$$\alpha = \frac{18\pi \cdot p\varepsilon_d^{3/2}}{\lambda} \frac{\varepsilon_2}{(\varepsilon_1 + 2\varepsilon_d)^2 + \varepsilon_2^2}$$
(1)

ここで p は金属の体積分率, λ は光の波長, ϵ_a は 金属周囲の物質の誘電率, $\epsilon_1 \ge \epsilon_2$ はそれぞれ金属 の誘電率の実部と虚部である.式(1)の α は,次式 を満たす光吸収波長のとき最大値となる.

 $\varepsilon_1 + 2\varepsilon_d = 0 \tag{2}$

TiO₂ は屈折率の高さと応用の可能性の多様さ から最も興味深い材料の1つである.これまでに, 噴霧熱分解法による TiO₂ 微粒子の調製について 報告がなされている⁴⁾.一方,蒸発凝縮法はナノ サイズの Ag 微粒子を得ることのできる有用な方 法である. これまでに, この方法を用いて発生さ せた Ag 微粒子の光学特性についての研究が行わ れている ^{5, 6)}. これらの方法を組み合わせ, 粒子 発生条件を変えることで, 様々な組成の Ag-TiO₂ エアロゾル粒子を容易に得ることができる. そし て, それらを基板上に沈着させることで, Ag-TiO₂ 微粒子からなる薄膜が作製できる.

本研究では、Ag 微粒子と TiO₂ 微粒子を、それ ぞれ蒸発凝縮法および噴霧熱分解法で作製し、同 時に基板上に沈着させることで、Ag-TiO₂ 微粒子 からなる薄膜を作製した.そしてそれらの光学特 性を評価し、Ag 微粒子の光学特性に及ぼす TiO₂ 微粒子の影響について検討を行った.

2. 実験方法

2. 1 Ag-TiO₂ 微粒子の調製と沈着

SiO₂ ガラス基板上に沈着させた Ag-TiO₂ 微粒 子からなる薄膜を蒸発凝縮法と噴霧熱分解法を組 み合わせて作製した.図1にAg-TiO₂ 微粒子から なる薄膜作製の装置図を示す.最初に,Ag 微粒子 を蒸発凝縮法によって発生させた.この方法では, 顆粒状 Ag を直径 11 mm のセラミック管内で N₂ ガスを流しながら 900 ℃で加熱し,その後,Ag ガスが通過する銅管を水冷することで Ag 微粒子 を析出させた.この際の N₂ ガスの流量を 5 L/min とした.

TiO₂ 微粒子は噴霧熱分解法で発生させた.TiO₂ 微粒子を発生させるための前駆体溶液は次のとお り調製した.C₂H₅OH を用いて濃度が 0.01 M と なるように調製した Ti(OC₃H₇)₄ (TTIP)を 5 分間 撹拌した後に H₂O を加えた.この際のモル比 H₂O/TTIPは1とした. さらに1時間撹拌するこ とで,前駆体溶液を得た. TiO₂微粒子を発生させ る際には, C₂H₅OHを用いてさらに希釈した 1× 10^{-5} M から 1× 10^{-4} M の TTIP 溶液を前駆体溶液 として用いた. TTIP 溶液の液滴は, 2 L/min の N₂ ガスを流しながらアトマイザーを用いて発生 させ,電気炉にて 500 ℃で熱分解した. 最後に, Ag 微粒子と TiO₂ 微粒子を混合した後, 20×20 mm²の大きさの SiO₂ ガラス基板上に 2 時間沈着 させて薄膜を得た.

2.2 Ag-TiO₂薄膜のキャラクタリゼー ションと光学特性の評価

SiO₂ ガラス基板上の Ag 微粒子と TiO₂ 微粒子 の存在を確認するために X 線回折測定 (CuKα線 源,40 kV,300 mA)を行った.また,表面の粒 子形状と膜厚を決定するために Ag-TiO₂薄膜の表 面と断面を電界放射型走査電子顕微鏡(FE-SEM) で観察した.

光学特性の評価として波長 200~800 nm の範 囲の光吸収スペクトルを紫外・可視分光光度計を 用いて測定した. さらに, Ag-TiO₂ 微粒子の非線 形屈折率γを Z-scan 法 ⁷によって見積もった. Z-scan 法の光源として, 波長 532 nm, 繰り返し 速度 10 Hz, パルス幅 5 ns の Nd-YAG レーザー を用いた. また, CS₂ を用いて入射光強度を見積 もった.

3. 結果と考察

3.1 Ag-TiO₂薄膜のキャラクタリゼー ション

図2にSiO₂ガラス基板上に沈着させたAg-TiO₂

図1 蒸発凝縮法と噴霧熱分解による Ag-TiO2粒子の発生と SiO2 ガラス基板への沈着の装置図

図 2 SiO₂ ガラス基板上へ沈着させた Ag-TiO₂粒子の XRD 回折パターン

微粒子の XRD パターンを示す. XRD パターンは 20が 38 と 44 ° 付近に, それぞれ Ag の(1 1 1) と(2 0 0)面に帰属される回折線 (JCPDS 4-783) が観察され,その存在が確認された.一方, TiO₂ に帰属される回折ピークは観察されなかった.こ れは TiO₂ 微粒子が非晶質状態となっているか, もしくは基板上の数密度が小さすぎて検出されな かったためであると考えられる.

Ag 微粒子, TiO2 微粒子を SiO2 ガラス基板上に 沈着させた試料の外観は, それぞれ黄色及び無色 であった. 一方, Ag 微粒子と TiO2 微粒子を同時 に沈着させた場合は赤紫色であり, Ag 微粒子の光 学特性(色)に TiO2 微粒子が大きな影響を与え ていることが分かった.

SiO₂ガラス基板上に沈着させた Ag 微粒子と 5 ×10⁻⁵ M の TTIP 濃度で調製した Ag-TiO₂ 微粒子 の FE-SEM 像を図 3 に示す. 図 3 (b)中の比較的 大きい粒子が TiO₂,小さい粒子が Ag であると考 えられる. 図 3 から, Ag 粒子は密に充填してお り,基板に沈着した際に凝集したことが分かる.

さらに,図3(b)に見られるようにAg 微粒子のサ イズは図3(a)より小さかった.これは,Ag 粒子 の間にTiO2粒子が存在しており,そのためAg 粒 子の結合や成長は抑えられたと考えられる.

3.2 Ag-TiO₂薄膜の線形および非線形 光学特性

Ag-TiO² 微粒子の光吸収スペクトルは **Ag** 微粒 子の LSPR によるピークを示した.光吸収ピーク 波長と TiO² 微粒子調製の際に前駆体溶液として 用いた TTIP 濃度の関係を図 4 に示す.光吸収ピ

図 3 SiO₂ ガラス基板上へ沈着させた(a) Ag と(b) Ag-TiO₂ 粒子の FE-SEM 像

ーク波長は1×10⁻⁵から5×10⁻⁵ MのTTIP濃度範囲で,濃度の増加に伴い長波長側にシフトした.
さらに,TTIP濃度が5×10⁻⁵ M以上のとき,吸収ピーク波長はほとんど一定となった.

上述した様に,金属微粒子の光吸収ピーク波長 は周囲の物質の誘電率変化によってシフトする. さらに, 金属微粒子の吸収ピーク波長の長波長側 へのシフトは, 粒子サイズの増大や凝集によって も生じる^{9,10)}.本研究における Ag-TiO₂ 微粒子の 場合,Ag微粒子の間にTiO2微粒子が存在してい るので,存在していない場合と比べ,Ag微粒子の 粒成長や凝集が生じない. それゆえ, 図4に見ら れる吸収ピーク波長の長波長側へのシフトは, TTIP 濃度の増大に伴い、TiO2粒子の個数密度や サイズが増大したことによる Ag 微粒子周囲の物 質の誘電率変化によるものであると考えられる. 噴霧熱分解法で前駆体溶液として用いた TTIP の 濃度が低い場合でも、LSPR による Ag 粒子の吸 収ピーク波長は変化した. それゆえ, 光スイッチ やセンサなどの LSPR が調整可能なデバイスに応 用可能であると思われる.

Ag-TiO₂ 微粒子の非線形屈折率γを Z-scan 法に よって決定した. γと前駆体溶液の TTIP 濃度の 関係を図 5 に示す. 1×10⁻⁵ と 2×10⁻⁵ M の TTIP

濃度の関係

濃度で調製した Ag-TiO2 微粒子の非線形屈折は観 察されなかった.図5に見られるように、Ag-TiO2 微粒子のyは, TTIP 濃度が増加するに伴い吸収ピ ーク波長が Z-scan 法で用いたレーザー波長(532 nm) に近づくため、LSPR の寄与によってわずか に負に増加した.しかしながら, γの絶対値は以前 報告した Ag 粒子の値 5,6)より小さかった. これは TiO2 微粒子の個数密度とサイズが TTIP 濃度の増 大に伴い増加するため, Ag 微粒子の負のγは LSPR によって増大するものの、非晶質の TiO2 微粒子の正のγで相殺され、結果的にγが増大しな かったと考えられる. TTIP 濃度が 1×10⁻⁵及び 2 ×10⁻⁵ M の場合は,LSPR による光学非線形性の 増大への寄与はほとんどなく、TiO2微粒子によっ て負の非線形屈折率が相殺されたため、非線形屈 折率が観察されなかったと考えられる.

4. まとめ

Ag 微粒子と TiO₂ 微粒子からなる薄膜を蒸発凝 縮法と噴霧熱分解法を組み合わせて調製した. Ag-TiO₂ 微粒子の LSPR による吸収ピーク波長は, 前駆体溶液の TTIP 濃度が増大するにつれて,470 から 520 nm へと長波長側にシフトした. TiO₂ 微 粒子の TTIP 濃度が低い場合でも Ag 微粒子の光 学特性に大きい影響を与え,吸収ピーク波長がシ フトし, LSPR が調整可能なデバイスに応用でき ると考えられる.

参考文献

- Y. Hamanaka, et al.: "Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass", Appl. Phys. Lett. 75, p 1712-1714 (1999).
- K. Uchida, et al.: "Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles", J. Opt. Soc. Am. B 11, p 1236-1243 (1994)
- G. Mie: "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen", Ann. Phys. (Leipzig), 25, p 377-445 (1908)
- 4) W-N. Wang, et al.:, "One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors", Mater. Sci. Eng. B, 123, p 194-202 (2005).
- 5) 橋本典嗣,ほか:"蒸発凝縮法によるナノサイ ズ粒子からなる銀薄膜の作製とその線形およ び非線形光学特性",日本セラミックス協会学 術論文誌,112,p204-209 (2004)
- N. Hashimoto, et al.: "The Change of the Surface Morphology and Optical Properties During the Heat-Treatment for Silver Films Deposited on Silicas", e-J. Surf. Sci. Nanotech., 3, p 120-124 (2005).
- M. Sheik-Bahae, et al.: "Sensitive measurement of optical nonlinearities using a single beam", IEEE J. Quantum Electron., 26, p 760-769 (1990)
- L. Yang, et al.: "Effects of surface resonance state on the plasmon resonance absorption of Ag nanoparticles embedded in partially

oxidized amorphous Si matrix", Appl. Phys. Lett., 76, p 1537–1539 (2000)

- 9) S. Norrman, et al.: "Optical properties of discontinuous gold films", Phys. Rev. B, 18, p 674-695 (1978)
- 10) M. Quinten, et al.: "Optical properties of

aggregates of small metal particles", Surf. Sci., 18, p 557-577 (1986)

(本研究は法人県民税の超過課税を財源としてい ます)