赤潮・底泥対策技術開発事業

底泥の堆積過程の解明と堆積抑制手法の開発

清水康弘・舘 洋・国分秀樹

目的

本研究事業は,英虞湾で赤潮や貧酸素を抑制,かつ持続 的な真珠養殖を行うための適切な管理手法を明らかにす ることを目的として,陸域と海域における物質的な相互 作用を解明し,干潟の再生による赤潮抑制効果,適切な流 入負荷量や真珠養殖量を環境シミュレーションモデル (以下モデル)により算出し,提案する。

なお,この事業は平成19年度から22年度までの4ヵ 年で,6つの研究課題について水産研究所を含む6研究 機関において取り組んだ。主な研究成果は別途、「赤潮・ 底泥対策技術開発事業研究成果報告書」で報告する。

ここでは、本年度に実施した、酸素条件が底泥分解に 与える影響調査と、モデル計算による適切な管理手法の 検討結果について述べる。

1.酸素条件が底泥分解に与える影響調査 方法

これまでに実施した調査結果によると、英虞湾に流入 する最大河川の前川から流入する陸起源の有機物は、河 ロ付近で速やかに沈降、堆積しており、底泥の炭素、窒 素比等から、その範囲は河口から約 1.5km の地点までと 考えられた。

本年度は,有機物の起源が陸と海で異なる測点の底泥 を,嫌気的,好気的条件下で28日間培養し,各条件下で の底泥の分解状況について調査を行った。

調査は陸起源有機物が堆積している前川河口(水深 2.0m),および植物プランクトン等の海洋起源有機物が 堆積していると考えられる小才庭(水深 5.4m),タコノ ボリ(水深 27.1m)の計3ヶ所にて実施した。H22 年 7 ~9月に各測点で,水温,塩分を多項目水質分析計

(JFE アドバンテック㈱,クロロテック AAQ-1183H) で観測後,アクリルコア(内径 11 cm)を用いて不撹乱状 態の底泥を9本ずつ採取して実験室に持ち帰り,うち3 本を培養前の底泥試料として,残りの6本を好気的条件 と嫌気的条件での培養試験に用いた。

実験区は好気区と,嫌気区の2区を設定し,底泥コア を現場水温と同じ水温に設定した水槽内に設置し,それ ぞれ異なる酸素条件下(好気的,嫌気的条件)で28日間, 遮光条件で培養した。好気区では、実験開始時も含めて 約1週間毎に底泥の直上水を、酸素を飽和させた濾過海 水(DO 6.3~8.5 mg/L)で底泥が巻き上がらないよう静 かに置換し、培養中にも底泥が巻き上がらない程度にエ アレーションを行なった。嫌気区では底泥の直上水を、 窒素ガスで低酸素状態にした濾過海水(DO 0.3~1.3 mg/ L)で、好気区と同様な方法、頻度で置換し、密閉条件 で底泥が巻き上がらない程度にスタラーで直上水を攪拌 しながら培養を行なった。なお、換水時に各区のコア中 の海水の溶存酸素量(以下 DO)を溶存酸素計(YSI 社、 Model-58)にて測定した。

底泥の採取は、培養前後に底泥コアの表層部分(0~2 cm)を採取し、0.5mmの篩で濾して異物を取り除いた後、 AVS,比重,COD,TOC,TN,SOD(底泥酸素消費速度) を分析した。分析方法は、AVSは検知管法(ガステック 社,201H),比重はシリンジを用いた重量法、CODは アルカリ分解法にて行った。TOC,TN含量は底泥を 105℃,24時間で乾燥し、すり潰して6N塩酸で酸処理し た後、CNコーダー(エレメンタール社、vario-MAX)に て測定した。SODはフラン瓶法で測定し、遮光したフラ ン瓶に湿泥,濾過海水を入れて現場水温で2日間培養し、 培養後の濾過海水のDO減少量により算出した。

図1. 調査測点の位置

結果及び考察

調査時の現場での底層の DO は各測点で、5.3~6.8 mg/ L と貧酸素状態はみられなかった。また培養前後におけ る濾過海水の DO は, 好気区で 5.4~7.9 mg/L, 嫌気区で 0.1~0.2 mg/L の範囲であり,各区とも概ね想定の酸素条件 を満たしていた。

培養前後の底質(AVS, COD, TOC, TN)の変化(3 本の平均値±標準偏差)を図2に培養開始時のSODを図 3に示す。

図2. 培養前後の底質(AVS, COD, TOC, TN)の変化

図3. 底泥の SOD 測定結果

培養前後の AVS は、河口測点で実験開始時 1.7 mg S/g-乾泥から好気区 2.4 mg S/g-乾泥, 嫌気区 3.8 mg S/g-乾泥, タコノボリ測点で実験開始時 0.1 mg S/g-乾泥から好気区 0.1 mg S/g-乾泥, 嫌気区 0.2 mg S/g-乾泥, 小才庭測点で実 験開始時 2.7 mg S/g-乾泥から好気区 2.3 mg S/g-乾泥, 嫌気 区 3.6 mg S/g-乾泥となり, 各測点とも嫌気区で増加した (有意差あり, p<0.05)。

COD は、小才庭測点で実験開始時 81.3 mg O₂/g-乾泥か ら嫌気区で 84.2 mg O₂/g-乾泥に増加し(有意差あり, p< 0.01)、その他の区で変化は認められなかった。

TOC で変化が認められたのは、小才庭測点の好気区、 河口測点の嫌気区のみで、小才庭測点で 36.1 mg C/g-乾泥 から 37.9 mg C/g-乾泥に増加(有意差あり、p<0.05)、 河口測点で 43.5 mg C/g-乾泥から 37.5 mg C/g-乾泥に減少 した(有意差あり、p<0.05)。TN は、いずれの区でも 変化は認められなかった。小才庭測点で TOC の増加が認 められた理由については、底泥の表層から 2cm 以深の有 機物(底生生物等)の移動が考えられるが、詳細を明らか にすることは出来なかった。

SOD は河口測点で7.9±0.6 mg O₂/m²/day,小才庭測点 で7.1±0.4 mg O₂/m²/day,タコノボリ測点で1.8±0.1 mg O₂/m²/day であり,河口測点,小才庭測点で同程度,タコノ ボリ測点は河口測点,小才庭測点の1/4 程度であった。

以上のように、28日間の培養により、河口測点では嫌 気的条件において、表層堆積物の一部が分解され、COD の増加、TOCの減少が認められた。好気区ではこのよう な変化は認められず、他の測点においては両区とも同様 で、分解は認められなかった。よって、陸起源の主な有 機物である陸上植物由来のリター等は嫌気的な条件で分 解されることが伺われた。また、海洋起源の有機物が多 く堆積している湾奥部、湾央部の堆積物は、陸起源と比 較して分解し難いと推測された。

2. モデル計算による適切な管理手法の検討 方法

河川からの栄養塩負荷量の削減,干潟再生,貝類養殖 による貧酸素抑制効果を定量化するため,モデルによる 計算を行った。

使用したモデルは,四日市大学の千葉教授が開発した 英虞湾環境動態予測モデル 2010 を使用した。このモデル は,先述の地域結集型共同研究事業において,英虞湾を 対象として開発されたモデルの改良版である。

計算ケースを表1に示す。計算ケース別の将来予測の 計算には,2004年の気象データ(気象庁)ならびに流動 観測データを使用した。

表1. 計算ケース

計算ケースの名称	河川流入負荷	アコヤ貝数	干潟面積
現状	100%	1倍	そのまま
河川0.5	50%	1倍	そのまま
河川0.8	80%	1倍	そのまま
河川0.9	90%	1倍	そのまま
アコヤ0.7	100%	0.7倍	そのまま
アコヤ2.0	100%	2倍	そのまま
干潟0	100%	1倍	干潟なし
干潟1.85	100%	1倍	消失した干潟の85%を再生
複合	80%	0.7倍	消失した干潟の85%を再生

結果および考察

1) DO の現況再現の計算結果

モデルの再現性を確認するため、立神浦の底層のDO 計算結果と自動モニタリングブイによる観測結果(実測 値)を比較した(図4)。その結果、6月上旬~8月上旬 と11月から12月に若干のずれが認められるものの、他 の時期では概ね合致していると考えられ、再現性は高い と判断された。

2)各計算ケースによる貧酸素発生予測計算結果

9 つの計算ケース別の貧酸素抑制効果として、湾奥部 の立神測点の底層(水深10m)における,貧酸素発生の 削減率(単位:%,現状を100として削減率を算出)を図 5に、英虞湾全体の水深 10m 層における貧酸素水域の日 間最大面積(km)を図6に示した。これをみると、河 川負荷1割減で24.4%,2割減で48.1%,5割減で56.3 %,貧酸素発生が削減された。真珠養殖量では3割減で 14.1%増加,2倍量で39.3%減少,干潟を完全に埋め立 てると11.1%増加,干潟再生で0.7%減少し,複合では 31.9%減少することがわかった。また、英虞湾全体の水 深10m層における1日あたりの貧酸素の発生最大面積は, 河川負荷1割減で0.18k m, 2割減で0.36k m, 5割減で 0.9k ml減少し, 真珠養殖量3割減で0.18k mlの増加, 2 倍量で 0.18k mが減少し、干潟を完全に埋め立てると 0.27k m²増加, 干潟再生で 0.09k m²の減少, そして複合で は 0.36k m の減少となった。なおこれらの値は、対策後 3年目の値である。

以上の結果から、貧酸素の抑制に最も効果的なのは、 河川負荷の削減であり、次いで真珠養殖量の増加、干潟 再生の順であった。河川負荷の削減では、負荷量を1割 削減するだけで、大きな削減効果を得られることが示唆 された。真珠養殖量では、養殖量を削減することにより、 貧酸素が増大していた。これは、貧酸素の抑制には赤潮 となる植物プランクトン量を削減することが重要であり、 真珠養殖には赤潮の発生を抑制する効果があることを示 していると思われる。ただし、このモデルでは真珠養殖 による筏周辺の底質悪化、および底泥攪拌により、貧酸 素発生を抑制する底生生物への悪影響等が考慮されてい ない。また,干潟の再生による貧酸素の抑制効果があま りみられなかったのは,干潟による栄養塩の吸収率を低 く設定したことの影響と考えられた。

これらの真珠養殖,および干潟の影響評価について, 今後さらに検討していく必要がある。

図4. 湾奥部(立神浦)の底層(水深10m)における 溶存酸素濃度,2004年実測値とモデル計算値と の比較

図 5. 英虞湾の立神測点の水深 10m 層における計算 ケース別貧酸素水発生日数の削減率の変化

図 6. 英虞湾全体の計算ケース別, 貧酸素水の最大発生 面積の変化

関連報文

赤潮・底泥対策技術開発事業成果報告書(平成23年)