鶏肉から分離された基質特異性拡張型 β-ラクタマーゼ（ESBL）産生大腸菌

永井佑樹，岩出義人*，赤地重宏，小林隆司

Extended-Spectrum-β-Lactamase (ESBL) producing Escherichia coli Isolated from Chicken Meat

Yuhki NAGAI, Yoshito IWADE, Shigehiro AKACHI and Takashi KOBAYASHI

近年、薬剤耐性菌の一つである基質特異性拡張型 β-ラクタマーゼ (Extended Spectrum-β-Lactamase: ESBL) 産生菌の増加が問題となっている。そこで今回、県内で流通する鶏肉における ESBL 産生大腸菌の検出ならびに遺伝子型別を実施した。ESBL 産生大腸菌は、国産鶏肉 12 検体中 4 検体、輸入鶏肉 5 検体中 3 検体の計 7 検体から検出され、国産鶏肉からは、CTX-M-1、CTX-M-15、輸入鶏肉からは CTX-M-2 型の ESBL 産生大腸菌がそれぞれ分離された。感受性試験では、輸入鶏肉由来株で耐性薬剤数が平均 7.3 薬剤となり、国産鶏肉由来（平均 3.3 薬剤）に比べ多剤耐性化傾向が強いことが明らかとなった。ESBL 産生菌は、臨床上のさらに感染症対策および食品衛生行政上においても重要な課題であり、今後もその動向を監視していくことが重要であると思われる。

キーワード：Extended-Spectrum-β-Lactamase (ESBL)，大腸菌，鶏肉，薬剤耐性菌

はじめに

ESBL（基質特異性拡張型 β-ラクタマーゼ）は、主にペニシリン系薬剤を分解するクラス A の β-ラクタマーゼ遺伝子に変異が起こり、アミノ酸置換によりセファタキシン（CTX）やセフタジミ（CAZ）等の第三世代セファロスポリオンやモノバクタム系薬のアズトレオナム（AZT）をも分解する能力を獲得した β-ラクタマーゼである。ESBL を産生する菌は、1983 年にドイツで初めてセラチア菌と肺炎桿菌で報告され11)。国内では 1995 年に大腸菌で初めて報告された12)。第三世代セファロスポリオン系薬は、医療現場で広く使用されているため、ESBL 産生菌は院内感染原因菌としても、市中感染原因菌としても重要な問題となっている。

ESBL にはさまざまな遺伝子型が存在するが、近年は CTX やセフタリアキソン（CTX）に対して高い耐性を示す CTX-M 型が主流を占めつつある。CTX-M 型は、遺伝子の同相性から主に 4 つの group, 即ち CTX-M-1 group, CTX-M-2 group, CTX-M-8 group および CTX-M-9 group に型別される。

ESBL 産生大腸菌の人への感染源の一つとして食肉、特に鶏肉が重要視されているが3)。三重県では食品における ESBL 産生大腸菌の調査報告例はなく、分布状況およびその遺伝子型についても明らかにされていない。そこで今回、三重県内で流通する鶏肉における ESBL 産生大腸菌の分離状況を明らかにするため、ESBL 産生大腸菌の検出ならびに遺伝子型別を検討したので、その結果を報告する。

方 法

1. 被検材料

2013 年 4 月から 7 月にかけて三重県内で購入した鶏肉 17 検体 (国内産 12 検体, 外国産 5 検体) を被検材料とした。

2. 分離と同定方法

鶏肉からの大腸菌の分離は、25g の鶏肉を 225ml のペプトン食塩緩衝液で増菌培養後、EC 培地発酵管 10mL に 1mL および等量をそれぞれ 3 本ずつ、計 6 本に接種し 44.5℃で 24 時間培養した。
1）菌便検査大腸菌群の分離

EC培地においてガス産生が確認された菌の培養液を2μg/mlのCTX加DHLおよびEMB寒天培地に画線接種し、35℃24時間培養後、赤色または金属様光沢を示したコロニーについて大腸菌群陽性とした。

2）ESBL産生菌の分離

Jarlier の方法8)に従い、市販の薬剤感受性試験用ディスク（BD）を使用して実施した。すなわち、ミューラーゼドン寒天培地（栄研）にアンピシン/クラブラクタム（AMP/CVA）およびスルベキタム/アンピシン（S/A）から25mm離して、β-ラクタム系薬剤のCTX、CAZを配置し、AMP/CVA、S/Aと各薬剤の間に阻止帯（Fig.1）が形成されたものをESBL産生陽性と判定した。

3）ESBL産生菌の同定

分離されたESBL産生菌は、Api20E（シメックススピノメリー）により菌種の同定を行った。

3. ESBL遺伝子型別

1）PCR法によるESBL遺伝子の検出

分離されたESBL産生菌は、Shibataらの方法5)に従い、TEM、SHV、CTX-M-1、CTX-M-2、CTX-M-9グループのESBL遺伝子検出を行った。また、既報に従い、プラスミド介在性AmpC-β-ラクタマーゼであるCMY-2をはじめ各種β-ラクタマーゼの検出も同時に実施した6)（Table1）。

2）ESBL遺伝子のvariant型別

PCRによりESBL陽性となった検体は、ダイレクトシークエンス法により塩基配列を決定しvariant型別を実施した。シークエンス法はBigDye Terminators v3.1 Cycle Sequencing Kit（Applied Biosystems）を使用し、3130 Genetic Analyzer（Applied Biosystems）により塩基配列を決定した。

4. 薬剤感受性試験

薬剤感受性試験はClinical and Laboratory Standards Institute（CLSI、旧NCCLS）の抗生物質ディスク感受性試験実施基準に基づき、市販の感受性試験用ディスク（セプシディスク、BD）を用いて実施した。供試薬剤は、クロロフェニコール（CP）、テトラサイクリン（TC）、ストレプトマイシン（SM）、カナマイシン（KM）、スルファメキサゾール・トリメトプリム合剤（ST）、ナリジクス酸（NA）、ノルフロキサシン（NFLX）、ゲンタマイシン（GM）、ホスピロマイシン（FOM）、シプロフロキサシン（CPFX）、スルファソキサゾール（Su）、イミペン（IPM）の12薬剤とした。

結果

1）大腸菌群およびESBL産生菌の検出

鶏肉17検体のうち、7検体（41.1％）からESBL産生菌が分離された。その内訳として国産鶏肉で12検体のうち4検体（33.3％）、輸入鶏肉では5検体のうち3検体（60.0％）が陽性となった。また陽性となった7検体から分離された34株（国産鶏肉由来：23株、輸入鶏肉由来：11株）のESBL産生菌は、Api20Eによる同定の結果、全て大腸菌と判定された。

2）ESBL遺伝子の遺伝子型別

34株のESBL産生大腸菌の遺伝子型別の結果、国産鶏肉由来の23株は、いずれもCTX-M-1グループで、輸入鶏肉由来の7株は全てCTX-M-2グループであった。輸入鶏肉由来の残りの4

<table>
<thead>
<tr>
<th>Table 1. Primers used for PCR and sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
</tr>
<tr>
<td>TEM-F</td>
</tr>
<tr>
<td>TEM-R</td>
</tr>
<tr>
<td>SHV-F</td>
</tr>
<tr>
<td>SHV-R</td>
</tr>
<tr>
<td>CTX-M-1-group-F</td>
</tr>
<tr>
<td>CTX-M-1-group-R</td>
</tr>
<tr>
<td>CTX-M-2-group-F</td>
</tr>
<tr>
<td>CTX-M-2-group-R</td>
</tr>
<tr>
<td>CTX-M-825-F</td>
</tr>
<tr>
<td>CTX-M-825-R</td>
</tr>
<tr>
<td>OXA-1-F</td>
</tr>
<tr>
<td>OXA-1-R</td>
</tr>
<tr>
<td>CMY-2-F</td>
</tr>
<tr>
<td>CMY-2-R</td>
</tr>
</tbody>
</table>
Table 2. Antimicrobial resistance profiles of ESBL-producing E.coli

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Domestic chicken</th>
<th>Imported chicken</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>1 (4.3)</td>
<td></td>
<td>1 (2.9%)</td>
</tr>
<tr>
<td>TC</td>
<td>23 (100)</td>
<td>11 (100)</td>
<td>34 (100%)</td>
</tr>
<tr>
<td>SM</td>
<td>8 (34.8)</td>
<td>11 (100)</td>
<td>19 (55.9%)</td>
</tr>
<tr>
<td>KM</td>
<td>3 (13.0)</td>
<td>5 (45.5)</td>
<td>8 (23.5%)</td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>11 (100)</td>
<td>11 (32.4%)</td>
</tr>
<tr>
<td>ST</td>
<td>8 (34.8)</td>
<td>7 (63.6)</td>
<td>15 (44.1%)</td>
</tr>
<tr>
<td>FOM</td>
<td>1 (4.3)</td>
<td>11 (100)</td>
<td>12 (35.3%)</td>
</tr>
<tr>
<td>NA</td>
<td>5 (21.7)</td>
<td>5 (45.5)</td>
<td>10 (29.4%)</td>
</tr>
<tr>
<td>NFXL</td>
<td>2 (8.7)</td>
<td>4 (36.4)</td>
<td>6 (17.6%)</td>
</tr>
<tr>
<td>CPFX</td>
<td>2 (8.7)</td>
<td>4 (36.4)</td>
<td>6 (17.6%)</td>
</tr>
<tr>
<td>Su</td>
<td>23 (100)</td>
<td>11 (100)</td>
<td>34 (100%)</td>
</tr>
<tr>
<td>IPM</td>
<td></td>
<td></td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

株に関しては、今回実施したPCRではESBL遺伝子の保有が確認されなかった。またシークエンスによりwild型を調査した結果、CTX-M-1groupの23株のうち、CTX-M-15が2株、CTX-M-1が21株であった。一方、CTX-M-2groupの7株は、型別調査の結果、全てCTX-M-2のタイプであった。また34株中21株でTEM遺伝子陽性となったが、シークエンスの結果、全てプロトタイプのTEM-1であった。

3. 薬剤感受性試験

ESBL産生大腸菌34株の12薬剤に対する耐性菌株数は、CP1株(2.9%)、TC34株(100%)、SM19株(55.9%)、KM8株(23.5%)、GM11株(32.4%)、ST15株(44.1%)、FOM12株(35.3%)、NA10株(29.4%)、NFXL6株(17.6%)、CPFX6株(17.6%)、Su34株(100%)、IPM0株(0%)であった（Table2）。また、单剤耐性株はなく、2剤耐性が13株、4剤耐性が5株、5剤耐性が2株、8剤耐性が5株、16剤以上耐性が4株であった。また、産生大腸菌および輸入鶏肉由来別の耐性薬剤数は、産生大腸菌由来株が平均3.3薬剤、输入鶏肉由来株が平均7.3薬剤であった。

考案

近年、食肉から、ESBL産生大腸菌の分離報告が増加している。ESBL産生菌は、国内で感染症治療のために広く使用されているセファロスポリシン系薬に耐性を示し、特に重症な基礎疾患や、術後などで免疫力の低下した患者に敗血症、肺炎、尿路感染症などを惹起する場合があり、院内感染原因菌として問題視されている。

日本でESBL産生菌が確認されたのは、1995年が最初で2）、これまでにESBL産生大腸菌の分離された動物は、卵鶏と肉鶏を含む家禽や牛、豚、家畜などである。これらのうち、特にESBL産生菌の検出報告が多い動物は家禽である310）、さらに肉用鶏から検出されるESBL型は、CTX-M型やTEM型、SHV型などでありヒトから検出されることと同一であるが、現在のところ、肉用鶏からESBL産生菌が検出される原因は明らかにされていない。また今回の調査では検出されなかったが、家禽を中心にCMY-2などクラスCに属するブラミド介在性AmpC産生大腸菌の検出も報告されている6）。

本研究では、県内で流通する鶏肉におけるESBL産生大腸菌の検出ならびに遺伝子型別を実施し、その分布状況を調査した。その結果、鶏肉17検体中7検体（41.1％）からESBL産生菌が検出され、国産鶏肉と輸入鶏肉を比較すると、国産鶏肉が12検体中4検体（33.3％）、輸入鶏肉が5検体中3検体（60.0％）で陽性となり、輸入鶏肉高い陽性率を示した。また、7検体から分離されたESBL産生大腸菌34株の遺伝子型は、遺伝子型の判別しなかった4株を除いて全てCTX-M型であり、国産鶏肉ではCTX-M1group、輸入鶏肉ではCTX-M2groupとなり、これらの結果は下島ら10）の報告したものと同様の傾向を示した。臨床現場で分離されるESBL産生菌は、従来、院内感染原因菌としてTEM型およびSHV型の遺伝子を保有する肺炎桿菌や大腸菌が主流であったが、2000年頃に世界中でCTX-M型菌の検出頻度が高くなっている。特に近年はCTX-M15型産生大腸菌O25:H4 ST131株のパンデミックが報告されている1112）。

今回の調査においても、県内で流通する鶏肉からCTX-M15型産生大腸菌が2株分離されており、CTXだけでなくCAZにも耐
性を示していたことから、MLST (Multilocus Sequencing Typing) 解析等詳細な解析が必要である。

ESBL 産生大腸菌の薬剤感受性試験では、平均 4.6 薬剤に耐性を示し、TC および Su に対しては全ての薬剤で耐性を示した。特に輸入鶏肉由来株では、耐性薬剤数が平均 7.3 薬剤となり、国産鶏肉由来平均 3.3 薬剤に比べ明らかに多く、多剤耐性化傾向が強かったことが明らかとなった。なかでも輸入鶏肉由来株は、アミノグリコシド系の SM (100%)、KM (45.5%)、GM (100%) に対して非常に高い耐性を示した。今回の結果では、ESBL 産生菌治療の第一選択薬であるカルバペネムには全ての薬剤で感受性を示したが、近年カルバペネムを分解する metallo-β-lactamase (MBL) と ESBL を同時に産生する菌も報告されており、今後は警戒が必要である。

また今回、ディスク法で ESBL 産生菌と判定された菌株、PCR により ESBL 遺伝子の保有が確認されていない大腸菌株数が多い（4 株）に関しては、CTX-M-25 や他の薬剤耐性遺伝子を有している可能性があり、さらに詳細な検査が必要である。

今回分離された CTX-M-1、M-2、M-15 型の ESBL 産生菌については病原性の調査は実施していないが、ESBL 産生菌は、非病原性の大腸菌だけでなく、志賀菌類大腸菌 026 や赤痢菌などでも報告されており。15,16) 2011 年に欧州で大規模な outbreak を起こした EHEC 014:H4 など ESBL 産生株の CTX-M-15 型であったことが確認されている。15,16) そういったことから、ESBL 産生菌は臨床のみならず感染症対策および食品衛生行政におけるも重要な課題であり、今後さらに薬剤耐性菌の蔓延防止や新たな耐性菌の出現を監視していくことが必要であると思われる。

文献

Extended-Spectrum β-Lactamase (ESBL) producing *Escherichia coli* Isolated from Chicken Meat

Yuhki NAGAI, Yoshito IWADE, Shigehiro AKACHI and Takashi KOBAYASHI

Keywords: Extended-Spectrum β-Lactamase (ESBL), *Escherichia coli*, Chicken meat, Drug resistant bacteria

To evaluate the prevalence of extended-spectrum β-lactamase (ESBL) in broiler chickens, 17 samples taken from commercial chicken meat were examined. ESBL producing *E.coli* were isolated from 4 of the 12 domestic chicken meats, 3 of the 5 imported chicken meats. ESBL genotypes of the 34 strains from 17 samples were examined by PCR and followed by sequencing. ESBL genotypes of domestic chicken isolates were *bla*CTX-M-1 and *bla*CTX-M-15, and those of imported chicken isolates were *bla*CTX-M-2. The drug susceptibility test showed that all strains were resistant to at least two or more antimicrobial agents. Furthermore, imported chicken isolates showed resistant to 7.3 of 12 antimicrobial agents tested on average, which was higher than domestic chicken isolates (3.3 of 12). ESBL producing bacteria has become a serious concern not only clinical practice but also infection control and food sanitation. Therefore, it is important to monitor the spread of drug resistant bacteria among food-producing animal and human origin.