山地森林の快適性（第 2 報）

市岡高男，山川雅弘，加藤進，佐来栄治，早川修二

四季について，穏やかな晴天日に森林及びその周辺においてテルベン類の濃度挙動と揮発性有害大気汚染物質濃度を調査した。その結果，森林及びその周辺におけるカンフォンの濃度挙動が - ピネンに類似していることが明らかになった。森林の内外における揮発性有害大気汚染物質濃度の比較により，森林が揮発性有害大気汚染物質を吸収している可能性が示唆された。固体吸着・加熱脱着・ガスクロマトグラフ質量分析方法に比べ，容器採取・ガスクロマトグラフ質量分析方法では - ピネンの正確な測定が難しいことが示唆された。

キーワード：カンフォン， - ピネン，揮発性有害大気汚染物質，測定方法

はじめに

近年，中高年層を中心に森林浴やハイキング等を通じて森林とのふれあいを求める動きが盛んになってきている。このような背景の下，著者らは山地森林の快適性についてこれまでいくつかの社会科学アプローチを実施してきた。そして森林周辺の大気環境の特性，森林浴の香り物質であるテルベン類の濃度挙動及び気温，湿度，におい等による森林の快適性について実測に基づいて明らかにしてきたところである。

本報ではこれまでの結果に加えて，さらにいくつかの知見が得られたので報告する。

調査地点及び調査方法

1. 調査地点

調査地点は三重県北部をほぼ南北に走る鈴鹿山脈の東側の山麓部及びその下（東側）に広がる谷間平野の一部にある。調査地点を図1に示す。また表1に各地点の状況を示す。なお沖積平野は山脈と並行して 17 ㎞の幅で存在し，その東側には伊勢湾がある。調査地の植生は次のとおりである。図1のとおり主にアカマツ林（一部スギ・ヒノキ林）が山麓部を中心に存在する。山麓部の上（西側）は主に落葉広葉樹のアカシデ，イヌシダ群落及び常葉広葉樹のアカシデ群落となっている。山麓部の下（東側）は主に水田雑草群落及び畑雑草群落となっている。調査地点は山麓（St.A ～C）及びその下の田園地帯（St.D ～ F）とした。なお St.A は三重県民の森内にある。また図1の枠外となるが，都市部の調査地点のSt.Gは，St.Aの南東約 16 kmの四日市市市街地に位置し，北西約 90 mに国道1号線があり，南東約700 mの四日市市港臨海部には石油化学コンビナートが立地している。

2. 調査方法

調査は穏やかな晴天を選んで行った。

テルベン類の濃度挙動について，図1に示した森林及びその周辺（St.A ～ F）で，TCT法（Thermal desorption Cold-Trap injection 法）による固体吸着・加熱脱着・ガスクロマトグラフ質量分析方法（以下，「捕集管法」と略す）により調査した。大気採取方法，分析方法等の詳細については既報1・2のとおりである。

また揮発性有害大気汚染物質の濃度について，森林内（St.A），森林外（St.C）及び都市部（St.G）に，有害大気汚染物質測定方法マニュアル3に準拠して容器採取・ガスクロマトグラフ質量分析方法（以下，「キャニスター法」と略す）により調査した。

調査時にはデータロガー付きの風向風速計，温度湿度計を用いて気象状況の把握を行った。

結果及び考察

1. テルベン類の濃度挙動

図2図33図33森林から田園地帯までのカンフォン濃度， - ピネン濃度の例を各々示した。この調査は春季の平成12年5月24日の昼の1時間（12時から13時まで）行った。このときのSt.Cにおける気象状況は快晴，平均値で東風2.7m/s， 気温29.3℃，湿度35.2%であった。なおこの日は終日快晴で，St.Cにおける調査前3時間の風向風速の平均値についても東風2.7m/sであった。東風は伊勢湾からの海風であり，安定した晴天日であった。この日と同一と仮定すると，森林のカンフォン濃度が急激に減少したのがわかる。これは図3の - ピネン濃度のパターンとほどう一致であり，カンフォンの濃度レベルは - ピネンの1/10弱であった。
表1 森林及びその周辺の調査地点の状況

<table>
<thead>
<tr>
<th>場所</th>
<th>森林内</th>
<th>森林外</th>
<th>森林の入口</th>
<th>田園地帯</th>
<th>田園地帯</th>
<th>田園地帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>地点名</td>
<td>St.A</td>
<td>St.B</td>
<td>St.C</td>
<td>St.D</td>
<td>St.E</td>
<td>St.F</td>
</tr>
<tr>
<td>日当たり</td>
<td>日陰</td>
<td>日向</td>
<td>日向</td>
<td>日向</td>
<td>日向</td>
<td>日向</td>
</tr>
<tr>
<td>主な樹種</td>
<td>ヒバ、アマガツ、シラカバ</td>
<td>ヒバ、アマガツ</td>
<td>カシ</td>
<td>ヒバ、アマガツ</td>
<td>無</td>
<td>無</td>
</tr>
<tr>
<td>標高</td>
<td>約760m</td>
<td>約110m</td>
<td>約90m</td>
<td>約80m</td>
<td>約55m</td>
<td>約55m</td>
</tr>
</tbody>
</table>

(注)主な樹種の欄で下線のものは、その中で特に多くを占める樹種。また()内は森林外のその地点周辺にある樹種。

図4、図5に四季についての森林及びその周辺におけるカンフェン濃度、α-ビニン濃度を各々示した。図4、図5各々の左側の図は12時から13時までの昼の1時間値である。また図4、図5各々の右側の図は14時から15時の1時間値である。各々における調査時の気象を表2に示した。

図4のカンフェン濃度のパターンは図5のα-ビニン濃度のパターンとは似ている。特に24時間値はほとんどSt.AとSt.Cで同じ値であり、1日を通しての平均的な濃度が森林内と森林周辺ではほとんど同じであった。

以上の結果からカンフェンの濃度挙動はα-ビニンに類似していることが明らかになった。α-ビニン、カンフェンとも分子量が同じであり、大気中的挙動が同じであることが示された。これは森林内部で固形のカンフェン（融点51.2℃）が常温で液体のα-ビニン（融点-57℃）と同じ挙動である点で興味深いことである。

2. 振発性有害大気汚染物質の濃度

図4、図5に四季についての森林及びその周辺におけるカンフェン濃度、α-ビニン濃度を各々示した。図4、図5各々の左側の図は12時から13時までの昼の1時間値をSt.A、St.C、St.Dで、各々標準ガスを用意した42種類の物質について調査した。表3にセンサーのG/C/M/S分析条件を示した、表4〜7に調査結果を示した。またSt.Cにおける調査時の気象は表2のとおりである。

表4〜7のSt.C/St.Aの1時間値比、24時間値比の各物質についての平均をみると、いずれも1よりも大きくなる。これはSt.A〜St.C周辺では特に発生源が無いこと及び4図の調査時の風向、風速の結果を考慮すると、森林が揮発性有害大気汚染物質を吸収している可能性を示唆していると考えられる。しかししながらSt.Aの近傍には発生源が無いが、St.Cの近傍（約80m）には道路があり、時折、自動車が通る。従ってこの影響を受けてSt.Cの値が幾分高くなったことも考えられるので、森林外の値比についてはさらなる検証を行いたい。
また St.G / St.A の 24 時間値比をみると、総じて物質においては 1 よりもかなり大きい。これは St.G の近傍には交通量の多い国道 1 号線があり、また石油化成コンピューターも近うに立地していることで、高濃度の物質についての発生源が付近にあることを反映していると考えられる。

3. キャ尼斯ター法によるテルペン類の測定方法の検討

テルペン類のうち α-ビニンについては、針葉樹林を中心とした森林及びその周辺では一般に比較的濃度が高い観測される。そこでテルペン類の測定方法として、本研究で用いている捕集管重合、やや定量下限値が高いが分析可能と思われるキャ尼斯ター法について比較検討してみた。

平成 11 年 5 月 31 日～6 月 1 日に St.A と St.C で 1 時間値と 24 時間値について、捕集管法とキャ尼斯ター法で同時に測定した。その α-ビニンの結果のうち、まず値の信頼性の観点から捕集管法における二重測定の値のばらつきが 20 % 以内であった St.A の 1 時間値と 24 時間値及び St.C の 24 時間値各々について平均値を求め、捕集管法の測定値とした。表 8 に大気調査時間を示した。次にこの 3 つの値に対応するキャ尼斯ター法の値をトルエン換算濃度で求めた。トルエン換算濃度として求めたのは、当初、キャ尼斯ター法による測定については計画しておらず、α-ビニン濃度の直接計算用の検量線を作成しなかったからである。またデータは Scan 法によって分析、同定したものを用いた。キャ尼斯ター法の GC/MS 分析条件は、Scan 法によったこと以外は揮発性有害大気汚染物質の分析に用いた表 4 の条件と同じである。なおキャ尼斯ター法での測定は採取日中に実施した。これらの値の関係を図 6 に示した。

既報 1) 2) で示したとおり捕集管法の α-ビニンの測定値についてはある程度信頼性がある。従って、もしキャ尼斯ター法において α-ビニンが正確に測定できる場合はこれら 3 点はほぼ直線上にあるはずである。ところが図 6 の 3 点のプロットはあきらかにばらついており、特に St.A の 1 時間値が異常である。なお同時に測定した揮発性有害大気汚染物質濃度については表 4 のとおり
図4 階層およびその周辺におけるカンフェン濃度

図5 階層およびその周辺におけるα-ビニン濃度

表2 St. Cにおける調査時の気象

<table>
<thead>
<tr>
<th>調査日</th>
<th>平成11年5月31日</th>
<th>平成11年9月9日</th>
<th>平成11年11月17日</th>
<th>平成12年3月2日</th>
</tr>
</thead>
<tbody>
<tr>
<td>大気</td>
<td>雲晴</td>
<td>雲晴</td>
<td>雲</td>
<td>雲</td>
</tr>
<tr>
<td>風向</td>
<td>S風</td>
<td>NE</td>
<td>ESE</td>
<td>N</td>
</tr>
<tr>
<td>風速(m/s)</td>
<td>1.4</td>
<td>3.3</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>気温(℃)</td>
<td>27.9</td>
<td>32.1</td>
<td>14.2</td>
<td>11.0</td>
</tr>
<tr>
<td>湿度(％)</td>
<td>33.7</td>
<td>44.8</td>
<td>35.2</td>
<td>32.3</td>
</tr>
</tbody>
</table>

(24時間値)

<table>
<thead>
<tr>
<th>調査開始</th>
<th>平成11年5月31日14時</th>
<th>平成11年9月9日14時</th>
<th>平成11年11月17日14時</th>
<th>平成12年3月2日14時</th>
</tr>
</thead>
<tbody>
<tr>
<td>大気</td>
<td>雲晴</td>
<td>雲晴</td>
<td>雲晴</td>
<td>雲晴</td>
</tr>
<tr>
<td>風向</td>
<td>ENE</td>
<td>NW</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>風速(m/s)</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>気温(℃)</td>
<td>20.8</td>
<td>25.5</td>
<td>7.8</td>
<td>5.9</td>
</tr>
<tr>
<td>湿度(％)</td>
<td>64.9</td>
<td>71.3</td>
<td>75.6</td>
<td>68.2</td>
</tr>
<tr>
<td>定量 attempted</td>
<td>単位</td>
<td>1時間値</td>
<td>2時間値</td>
<td>3時間値</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>定量</th>
<th>平成13年</th>
<th>平成14年</th>
<th>平成15年</th>
</tr>
</thead>
<tbody>
<tr>
<td>1時間値</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2時間値</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3時間値</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表3 キャニスター法のGC/MSの分析条件

試料濃縮装置：
GC/MS装置：
カラム：HP-1 5% ポリジメチルシロキサン、膜厚0.32μm
キャリアガス：ヘリウム、アセチレンガス
イオン源温度：
イオン化電圧：

モニターアイオン：
各測定物質について2イオン、
各内部標準物質について1イオン

表4 揮発性有害大気汚染物質濃度（春）

単位： 1 2 3 4 5 6 単位は無名数

<table>
<thead>
<tr>
<th>定量</th>
<th>平成13年</th>
<th>平成14年</th>
<th>平成15年</th>
</tr>
</thead>
<tbody>
<tr>
<td>1時間値</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2時間値</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3時間値</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表5-7についても同様

注1: 時間値は平成13年5月1日00時～7日00時
注2: 時間値は平成14年5月3日00時～翌日00時
注3: 物質の変化については以下のようなもの
注4: 時間値は平成13年5月1日00時～7日00時
注5: 以上ならば

注6: 以上ならば
<table>
<thead>
<tr>
<th>表5 揮発性有害大気汚染物質濃度(夏)</th>
</tr>
</thead>
<tbody>
<tr>
<td>単位: μg/m³ , 20°C (値比は無名数)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>1時間値(1)</th>
<th>24時間値(2)</th>
<th>1時間値/24時間値</th>
<th>1時間値(3)</th>
<th>24時間値(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-二塩化二塩素メタン</td>
<td>0.049</td>
<td>3.6</td>
<td>3.4</td>
<td>1.0</td>
<td>0.88</td>
</tr>
<tr>
<td>2-塩素メタン</td>
<td>0.022</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>3-塩素メタン</td>
<td>0.046</td>
<td>0.17</td>
<td>0.18</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>4-塩素メタン</td>
<td>0.022</td>
<td>0.022</td>
<td>0.26</td>
<td>0.26</td>
<td>0.12</td>
</tr>
<tr>
<td>6-塩素メタン</td>
<td>0.019</td>
<td>0.266</td>
<td>0.93</td>
<td>0.10</td>
<td>0.27</td>
</tr>
<tr>
<td>7-塩素メタン</td>
<td>0.033</td>
<td>0.22</td>
<td>0.10</td>
<td>0.110</td>
<td>0.099</td>
</tr>
<tr>
<td>8-塩素メタン</td>
<td>0.033</td>
<td>0.053</td>
<td>0.073</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>9-塩素メタン</td>
<td>0.010</td>
<td>2.2</td>
<td>2.4</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>10-塩素メタン</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>11-塩素メタン</td>
<td>0.045</td>
<td>3.4</td>
<td>3.9</td>
<td>4.4</td>
<td>2.8</td>
</tr>
<tr>
<td>12-塩素メタン</td>
<td>0.028</td>
<td>0.028</td>
<td>0.028</td>
<td>0.028</td>
<td>0.028</td>
</tr>
<tr>
<td>13-塩素メタン</td>
<td>0.062</td>
<td>0.95</td>
<td>1.0</td>
<td>0.77</td>
<td>0.61</td>
</tr>
<tr>
<td>14-塩素メタン</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>15-塩素メタン</td>
<td>0.0079</td>
<td>0.0079</td>
<td>0.0079</td>
<td>0.0079</td>
<td>0.0079</td>
</tr>
<tr>
<td>16-塩素メタン</td>
<td>0.026</td>
<td>0.14</td>
<td>0.18</td>
<td>0.49</td>
<td>0.36</td>
</tr>
<tr>
<td>17-塩素メタン</td>
<td>0.026</td>
<td>0.14</td>
<td>0.11</td>
<td>0.51</td>
<td>0.21</td>
</tr>
<tr>
<td>18-塩素メタン</td>
<td>0.069</td>
<td>0.46</td>
<td>0.51</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>19-塩素メタン</td>
<td>0.040</td>
<td>0.49</td>
<td>0.82</td>
<td>1.10</td>
<td>1.4</td>
</tr>
<tr>
<td>20-塩素メタン</td>
<td>0.049</td>
<td>0.92</td>
<td>1.0</td>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>21-塩素メタン</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.070</td>
<td>0.070</td>
</tr>
<tr>
<td>22-塩素メタン</td>
<td>0.016</td>
<td>0.10</td>
<td>0.13</td>
<td>0.61</td>
<td>0.88</td>
</tr>
<tr>
<td>23-塩素メタン</td>
<td>0.018</td>
<td>0.018</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>24-塩素メタン</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>25-塩素メタン</td>
<td>0.034</td>
<td>0.034</td>
<td>0.034</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>26-塩素メタン</td>
<td>0.015</td>
<td>7.1</td>
<td>7.9</td>
<td>49</td>
<td>190</td>
</tr>
<tr>
<td>27-塩素メタン</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
<td>0.034</td>
<td>0.034</td>
</tr>
<tr>
<td>28-塩素メタン</td>
<td>0.031</td>
<td>0.090</td>
<td>0.10</td>
<td>0.35</td>
<td>0.29</td>
</tr>
<tr>
<td>29-塩素メタン</td>
<td>0.007</td>
<td>0.004</td>
<td>0.003</td>
<td>0.007</td>
<td>0.003</td>
</tr>
<tr>
<td>30-塩素メタン</td>
<td>0.003</td>
<td>1.6</td>
<td>1.8</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>31-塩素メタン</td>
<td>0.044</td>
<td>0.64</td>
<td>0.80</td>
<td>6.5</td>
<td>8.5</td>
</tr>
<tr>
<td>32-塩素メタン</td>
<td>0.013</td>
<td>0.45</td>
<td>0.61</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>33-塩素メタン</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>34-塩素メタン</td>
<td>0.012</td>
<td>0.53</td>
<td>0.73</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>35-塩素メタン</td>
<td>0.010</td>
<td>0.21</td>
<td>0.43</td>
<td>0.85</td>
<td>0.4</td>
</tr>
<tr>
<td>36-塩素メタン</td>
<td>0.010</td>
<td>0.39</td>
<td>0.15</td>
<td>0.66</td>
<td>2.5</td>
</tr>
<tr>
<td>37-塩素メタン</td>
<td>0.012</td>
<td>0.36</td>
<td>0.81</td>
<td>1.2</td>
<td>7.4</td>
</tr>
<tr>
<td>38-塩素メタン</td>
<td>0.0079</td>
<td>0.038</td>
<td>0.068</td>
<td>0.013</td>
<td>0.016</td>
</tr>
<tr>
<td>39-塩素メタン</td>
<td>0.0076</td>
<td>0.12</td>
<td>0.18</td>
<td>0.61</td>
<td>1.40</td>
</tr>
<tr>
<td>40-塩素メタン</td>
<td>0.010</td>
<td>0.018</td>
<td>0.023</td>
<td>0.035</td>
<td>0.10</td>
</tr>
<tr>
<td>41-塩素メタン</td>
<td>0.022</td>
<td>0.022</td>
<td>0.022</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>42-塩素メタン</td>
<td>0.068</td>
<td>0.068</td>
<td>0.068</td>
<td>0.068</td>
<td>0.068</td>
</tr>
</tbody>
</table>

*注1）1時間値は平成11年4月11日1時～3時調査。
*注2）24時間値は平成11年4月10日14時～翌日14時調査。
<table>
<thead>
<tr>
<th>定義</th>
<th>1時間値</th>
<th>24時間値</th>
<th>1時間</th>
<th>24時間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>比例</td>
<td>比例</td>
</tr>
<tr>
<td>1</td>
<td>1,1,2,2-テトラフルオロエタン(F-114)</td>
<td>0.007</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>チロロメタン</td>
<td>0.038</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>チロロメタン(4-12)</td>
<td>0.040</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>チロロメタン(1,1-2-デカルテレン)</td>
<td>0.055</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>5</td>
<td>チロロメタン(1,1,1-トリフルオロエタン)</td>
<td>0.024</td>
<td>0.034</td>
<td>0.029</td>
</tr>
<tr>
<td>6</td>
<td>ブロモメタン</td>
<td>0.0046</td>
<td>0.07</td>
<td>0.073</td>
</tr>
<tr>
<td>7</td>
<td>チロロメタン</td>
<td>0.063</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>8</td>
<td>チロロメタン(1,1,1-トリフルオロエタン)</td>
<td>0.052</td>
<td>0.59</td>
<td>0.80</td>
</tr>
<tr>
<td>9</td>
<td>チロロメタン(1,1,1-トリフルオロエタン)</td>
<td>0.002</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>10</td>
<td>チロロメタン</td>
<td>0.041</td>
<td>0.53</td>
<td>0.81</td>
</tr>
<tr>
<td>11</td>
<td>チロロメタン</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
</tr>
<tr>
<td>12</td>
<td>クロロチフローロメタン(F-11)</td>
<td>0.092</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>13</td>
<td>クロロチフローロメタン(F-11)</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>14</td>
<td>クロロチフローロメタン(F-11)</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
</tr>
<tr>
<td>15</td>
<td>クロロチフローロメタン(F-11)</td>
<td>0.023</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>16</td>
<td>クロロチフローロメタン(F-11)</td>
<td>0.028</td>
<td>0.075</td>
<td>0.073</td>
</tr>
<tr>
<td>17</td>
<td>クロロチフローロメタン(F-11)</td>
<td>0.036</td>
<td>0.47</td>
<td>0.51</td>
</tr>
<tr>
<td>18</td>
<td>ケンゼン</td>
<td>0.0076</td>
<td>0.68</td>
<td>0.89</td>
</tr>
<tr>
<td>19</td>
<td>ケンゼン</td>
<td>0.0050</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>20</td>
<td>ケンゼン</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>21</td>
<td>ケンゼン</td>
<td>0.040</td>
<td>0.049</td>
<td>0.043</td>
</tr>
<tr>
<td>22</td>
<td>ケンゼン</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>23</td>
<td>ケンゼン</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
</tr>
<tr>
<td>24</td>
<td>ケンゼン</td>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
</tr>
<tr>
<td>25</td>
<td>ケンゼン</td>
<td>0.026</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>26</td>
<td>ケンゼン</td>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
</tr>
<tr>
<td>27</td>
<td>ケンゼン</td>
<td>0.034</td>
<td>0.085</td>
<td>0.084</td>
</tr>
<tr>
<td>28</td>
<td>ケンゼン</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>29</td>
<td>ケンゼン</td>
<td>0.022</td>
<td>0.028</td>
<td>0.13</td>
</tr>
<tr>
<td>30</td>
<td>ケンゼン</td>
<td>0.016</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>31</td>
<td>ケンゼン</td>
<td>0.027</td>
<td>0.10</td>
<td>0.047</td>
</tr>
<tr>
<td>32</td>
<td>ケンゼン</td>
<td>0.013</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>33</td>
<td>ケンゼン</td>
<td>0.0048</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>34</td>
<td>ケンゼン</td>
<td>0.023</td>
<td>0.16</td>
<td>0.32</td>
</tr>
<tr>
<td>35</td>
<td>ケンゼン</td>
<td>0.024</td>
<td>0.054</td>
<td>0.13</td>
</tr>
<tr>
<td>36</td>
<td>ケンゼン</td>
<td>0.032</td>
<td>0.068</td>
<td>0.090</td>
</tr>
<tr>
<td>37</td>
<td>ケンゼン</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>38</td>
<td>ケンゼン</td>
<td>0.031</td>
<td>0.063</td>
<td>0.069</td>
</tr>
<tr>
<td>39</td>
<td>ケンゼン</td>
<td>0.023</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>40</td>
<td>ケンゼン</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>41</td>
<td>ケンゼン</td>
<td>0.012</td>
<td>0.0012</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

*注)1時間値:平成11年11月1日14時~平成11年11月1日13時調査
*注)24時間値:平成11年11月1日14時~翌日14時調査
表7 溶出性有害大気污染物質濃度（冬）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromodifluoromethane</td>
<td>0.038</td>
<td>4.1</td>
<td>4.4</td>
<td>3.6</td>
<td>3.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.030</td>
<td>1.9</td>
<td>1.9</td>
<td>1.4</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>0.037</td>
<td>0.18</td>
<td>0.18</td>
<td>0.12</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>0.023</td>
<td>0.063</td>
<td>0.074</td>
<td>0.074</td>
<td>0.10</td>
<td>4.2</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>0.028</td>
<td>0.47</td>
<td>0.14</td>
<td>0.062</td>
<td>0.10</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromoethane</td>
<td>0.043</td>
<td>0.64</td>
<td>0.14</td>
<td>0.086</td>
<td>0.083</td>
<td>0.10</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.032</td>
<td>0.055</td>
<td>0.086</td>
<td>0.060</td>
<td>0.070</td>
<td>0.70</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.038</td>
<td>2.3</td>
<td>2.4</td>
<td>1.7</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>0.059</td>
<td>0.11</td>
<td>0.21</td>
<td>0.15</td>
<td>0.18</td>
<td>1.8</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Dichloroethane</td>
<td>0.059</td>
<td>1.8</td>
<td>23</td>
<td>1.0</td>
<td>1.6</td>
<td>5.5</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.030</td>
<td>0.14</td>
<td>0.27</td>
<td>0.10</td>
<td>0.12</td>
<td>0.38</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.028</td>
<td>0.18</td>
<td>0.18</td>
<td>0.13</td>
<td>0.16</td>
<td>1.3</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.028</td>
<td>0.25</td>
<td>0.41</td>
<td>0.25</td>
<td>0.31</td>
<td>0.41</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0140</td>
<td>1.2</td>
<td>1.3</td>
<td>0.98</td>
<td>1.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>0.036</td>
<td>0.87</td>
<td>0.94</td>
<td>0.63</td>
<td>0.65</td>
<td>0.89</td>
</tr>
<tr>
<td>Dichloropropane</td>
<td>0.026</td>
<td>0.051</td>
<td>0.050</td>
<td>0.032</td>
<td>0.036</td>
<td>0.057</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.018</td>
<td>0.43</td>
<td>0.35</td>
<td>0.24</td>
<td>0.10</td>
<td>1.1</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>0.018</td>
<td>0.018</td>
<td>0.018</td>
<td>0.18</td>
<td>0.10</td>
<td>0.018</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethene</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
</tr>
<tr>
<td>1,2,3,4-Tetrachloroethene</td>
<td>0.018</td>
<td>0.18</td>
<td>0.18</td>
<td>0.10</td>
<td>0.18</td>
<td>0.10</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>0.032</td>
<td>0.053</td>
<td>0.10</td>
<td>0.031</td>
<td>0.072</td>
<td>0.65</td>
</tr>
<tr>
<td>1,4-Dichloroethylbenzene</td>
<td>0.028</td>
<td>0.25</td>
<td>0.52</td>
<td>0.27</td>
<td>0.75</td>
<td>0.49</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>0.010</td>
<td>0.049</td>
<td>0.055</td>
<td>0.011</td>
<td>0.016</td>
<td>0.64</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.062</td>
<td>1.3</td>
<td>3.6</td>
<td>0.34</td>
<td>0.52</td>
<td>9.4</td>
</tr>
<tr>
<td>1,3,4-Xylene</td>
<td>0.040</td>
<td>0.42</td>
<td>1.6</td>
<td>0.15</td>
<td>0.27</td>
<td>4.9</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.038</td>
<td>0.069</td>
<td>0.38</td>
<td>0.031</td>
<td>0.061</td>
<td>0.19</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethene</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>1,2-Xylene</td>
<td>0.041</td>
<td>0.37</td>
<td>1.20</td>
<td>0.12</td>
<td>0.23</td>
<td>3.3</td>
</tr>
<tr>
<td>4-Ethyl-Toluene</td>
<td>0.032</td>
<td>0.093</td>
<td>0.13</td>
<td>0.047</td>
<td>0.10</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>0.032</td>
<td>0.053</td>
<td>0.10</td>
<td>0.031</td>
<td>0.072</td>
<td>0.65</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>0.033</td>
<td>0.25</td>
<td>0.52</td>
<td>0.27</td>
<td>0.75</td>
<td>4.0</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.0690</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.064</td>
<td>0.10</td>
<td>0.13</td>
<td>0.034</td>
<td>0.060</td>
<td>0.76</td>
</tr>
<tr>
<td>1,2-Dibenzanthracene</td>
<td>0.0081</td>
<td>0.013</td>
<td>0.014</td>
<td>(0.0078)</td>
<td>0.010</td>
<td>0.15</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>0.012</td>
<td>0.012</td>
<td>0.015</td>
<td>(0.012)</td>
<td>0.012</td>
<td>0.17</td>
</tr>
<tr>
<td>1,2-5-Benzanthracene-1,3-Butaadiene</td>
<td>0.064</td>
<td>0.004</td>
<td>0.004</td>
<td>(0.004)</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

単位：μg/g・20℃（値比は無名数）

注1: 1時間値は平成12年3月2日12時4時間値。
注2: 24時間値は平成12年3月2日14時～翌日14時調査。

表8 大気調査時間

<table>
<thead>
<tr>
<th>地点名</th>
<th>調査時間（時間数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, T, A</td>
<td>1時間（平成11年5月31日12時～13時）</td>
</tr>
<tr>
<td>S, T, A</td>
<td>24時間（平成11年5月31日14時～翌日14時）</td>
</tr>
</tbody>
</table>

図6 α-ビニル濃度の比較
で総じて異常な値はなく、キャニスター法自体の操作上の問題はなかったと考えられる。また、このようにならばつきは他の時期に実施した同時測定の例でもみようかれた。以上のことは、キャニスター法では - ピンの正確な測定が難しい可能性を示唆している。この原因として - ピンが揮発性有害大気汚染物質と違って安定な物質ではなく、大気採取時から測定されるまでの過程で採取大気中のO₃、NOₓ及び水分の作用を受けて変反応し、気化したものと考えられる。

- ピンは室内空気中化学物質として特に木質住宅室内においてTVOC（揮発性有機化合物）の主要な成分の一つとして他の揮発性有害大気汚染物質とともに観測される物質である。TVOCについては、これら室内空気中化学物質をキャニスター法等の方法によりトルエン換算濃度の和として測定し、評価することが示されている1)こともあり、今後さらなる検証を行いたい。

ま と め

四季について、穏やかな晴天日に森林及びその周辺においてベルペン類の濃度挙動、揮発性有害大気汚染物質濃度を調査したところ、次のようなことが明らかになった。

- 森林及びその周辺におけるケンフェンの濃度挙動が - ピンに類似していることが明らかになった。分子量が同じであるが、常温で固体のケンフェンと液体の - ピンの大気中の挙動が同じであることが示された。

文 献

1) 市岡高男、加藤進、他：山地森林の快適性（第1報）、三重県保健環境研究所年報（環境部門）、1，29 - 35 (1999)
2) 岐阜・三重・滋賀三県環境対策研究会 編：森林の環境に関する総合的研究（岐阜・三重・滋賀三県環境関係研究機関共同研究）（2001）
3) 環境庁大気汚染法大気規制課：有害大気汚染物質測定方法マニュアル 997 2.
5) 厚生省生活衛生局：室内空気中化学物質の室内濃度指針値及び揮発性有機化合物の室内濃度暫定目標値等について（2000）

Amenity of the Forest at the Foot of a Mountain(Second Report)

Takao ICHIOKA, Masahiro YAMAKAWA, Susumu KATO, Eiji SARAI and Syuji HAYAKAWA

Key words: Camphene, -Pinene, Volatile organic compounds, Measurement method

The concentrations of monoterpenes and volatile organic compounds were investigated in a forest and the outskirts of it on calm fine weather day in the four seasons.

As a result, the behavior of camphene is found to be similar to that of -pinene. The possibility that the forest absorbed the volatile organic compounds was suggested by comparison of the concentrations of the volatile organic compounds in the inside and outside of the forest. In comparison with the solid absorption-thermal desorption-GCMS analysis method, it was suggested that it is difficult to measure -pinene correctly by using the canister collection-GCMS analysis method.